Springe direkt zu Inhalt

Univ.-Prof. Dr. Fabian Hoffmann

Bild_Fabian_Hoffmann

Freie Universität Berlin

Institut für Meteorologie

Leiter der AG Allgemeine Meteorologie

Adresse
Carl-Heinrich-Becker-Weg 6-10
Raum 280 / Neubau
12165 Berlin

Since 2025

Professor for General Meteorology, Freie Universität Berlin.

2020-2025

Emmy-Noether-Research-Group-Leader, Ludwig-Maximilians-Universität München.

2017-2020

CIRES Visiting Fellow, University of Colorado Boulder, USA.

2014 – 2017

Ph.D. (summa cum laude), Leibniz Universität Hannover.
Committee: Prof. Dr. S. Raasch, Prof. Dr. Y. Noh, Dr. G. Feingold.

2011-2014

M.Sc. in Meteorology, Leibniz Universität Hannover.

2008-2011

B.Sc. in Meteorology, Leibniz Universität Hannover.

Researcher-ID: A-7056-2018

2025

P. Prabhakaran, T. A. Myers, F. Hoffmann, and G. Feingold, “Aerosol-Cloud Interactions in Marine Low-Clouds in a Warmer Climate,” Jun. 2025, doi: 10.5194/egusphere-2025-2935
L. Rug, W. Schimmel, F. Hoffmann, and O. Knoth, “Clouds’ Clout on the Aerosol Size Distribution - Modelling Detailed Chemical Processing,” Mar. 2025, doi: 10.5194/egusphere-egu25-15296.

B. Kärcher et al., “Dissecting cirrus clouds: navigating effects of turbulence on homogeneous ice formation,” npj Climate and Atmospheric Science, vol. 8, no. 1, Apr. 2025, doi: 10.1038/s41612-025-01024-w.

G. Sarnitsky, G. Sardina, G. Svensson, A. Pumir, F. Hoffmann, and B. Mehlig, “Does small-scale turbulence matter for ice growth in mixed-phase clouds?,” Physical Review Fluids, vol. 10, no. 5, p. 53803, May 2025, doi: 10.1103/physrevfluids.10.053803.

B. Ascher and F. Hoffmann, “Impacts of Entrainment and Mixing on Ice Growth in Mixed-Phase Clouds,” Mar. 2025, doi: 10.5194/egusphere-egu25-10410.

Y.-S. Chen, P. Prabhakaran, F. Hoffmann, J. Kazil, T. Yamaguchi, and G. Feingold, “Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus,” Atmospheric Chemistry and Physics, vol. 25, no. 12, pp. 6141–6159, Jun. 2025, doi: 10.5194/acp-25-6141-2025.

F. Yang et al., “Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse,” Atmospheric Chemistry and Physics, vol. 25, no. 6, pp. 3785–3806, Apr. 2025, doi: 10.5194/acp-25-3785-2025.

A. Wang et al., “Model Output from the Mixed-Phase Cloud Chamber Intercomparison at ICMW 2024.” Zenodo, 2025. doi: 10.5281/ZENODO.15811058.

F. Hoffmann, Y.-S. Chen, and G. Feingold, “On the processes determining the slope of cloud water adjustments in weakly and non-precipitating stratocumulus,” Atmospheric Chemistry and Physics, vol. 25, no. 15, pp. 8657–8670, Aug. 2025, doi: 10.5194/acp-25-8657-2025.

G. Feingold, F. Glassmeier, J. Zhang, and F. Hoffmann, “Opinion: Inferring process from snapshots of cloud systems,” Atmospheric Chemistry and Physics, vol. 25, no. 18, pp. 10869–10885, Sep. 2025, doi: 10.5194/acp-25-10869-2025.

J.-S. Lim and F. Hoffmann, “Regimes of Droplet Size Distribution Evolution in Stratocumulus: From Adiabatic Growth to Entrainment and Mixing,” Apr. 2025, doi: 10.5194/egusphere-egu25-8044.

Z. C. Rowland, F. Hoffmann, F. Glassmeier, I. Steinke, and H. Russchenberg, “Sensitivities of Marine Cloud Brightening Studied with a Lagrangian Cloud Model,” Jan. 2025, doi: 10.5194/egusphere-egu24-4114.

L. Rug, W. Schimmel, F. Hoffmann, and O. Knoth, “Supplementary material to “The Chemical Mechanism Integrator Cminor v1.0: A Stand-Alone Fortran Environment for the Particle-Based Simulation of Chemical Multiphase Mechanisms,”” May 2025, doi: 10.5194/egusphere-2025-380-supplement.

J.-S. Lim, Y. Noh, H. Lee, and F. Hoffmann, “The critical number and size of precipitation embryos to accelerate warm rain initiation,” Atmospheric Chemistry and Physics, vol. 25, no. 10, pp. 5313–5329, May 2025, doi: 10.5194/acp-25-5313-2025.

 2024

J. Kainz et al., “Benchmarking Turbulence Models to Represent Cloud-Edge Mixing.” arXiv, 2024. doi: 10.48550/ARXIV.2410.03789.

Y.-S. Chen et al., “Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble,” Atmospheric Chemistry and Physics, vol. 24, no. 22, pp. 12661–12685, Nov. 2024, doi: 10.5194/acp-24-12661-2024.

P. Prabhakaran, F. Hoffmann, and G. Feingold, “Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition,” Atmospheric Chemistry and Physics, vol. 24, no. 3, pp. 1919–1937, Feb. 2024, doi: 10.5194/acp-24-1919-2024.

J.-S. Lim and F. Hoffmann, “Life Cycle Evolution of Mixing in Shallow Cumulus Clouds,” Journal of Geophysical Research: Atmospheres, vol. 129, no. 10, May 2024, doi: 10.1029/2023jd040393.

Y.-S. Chen, P. Prabhakaran, F. Hoffmann, J. Kazil, T. Yamaguchi, and G. Feingold, “Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus,” Dec. 2024, doi: 10.5194/egusphere-2024-3891.

C. Claudel, A. Lockley, F. Hoffmann, and Y. Xia, “Marine-cloud brightening: an airborne concept,” Environmental Research Communications, vol. 6, no. 3, p. 35020, Mar. 2024, doi: 10.1088/2515-7620/ad2f71.

F. Yang et al., “Microphysics regimes due to haze-cloud interactions: cloud oscillation and cloud collapse,” Jun. 2024, doi: 10.5194/egusphere-2024-1693.

F. Hoffmann, Y.-S. Chen, and G. Feingold, “On the Processes Determining the Slope of Cloud-Water Adjustments in Non-Precipitating Stratocumulus.” Zenodo, 2024. doi: 10.5281/ZENODO.14388449.

G. Feingold et al., “Physical science research needed to evaluate the viability and risks of marine cloud brightening,” Science Advances, vol. 10, no. 12, Mar. 2024, doi: 10.1126/sciadv.adi8594.

Y.-S. Chen et al., “Supplementary material to “Diurnal evolution of non-precipitating marine stratocumuli in an LES ensemble,”” Apr. 2024, doi: 10.5194/egusphere-2024-1033-supplement.

Y.-S. Chen, P. Prabhakaran, F. Hoffmann, J. Kazil, T. Yamaguchi, and G. Feingold, “Supplementary material to “Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus,”” Dec. 2024, doi: 10.5194/egusphere-2024-3891-supplement.

F. Hoffmann, F. Glassmeier, and G. Feingold, “Supplementary material to “The Impact of Aerosol on Cloud Water: A Heuristic Perspective,”” Jun. 2024, doi: 10.5194/egusphere-2024-1725-supplement.

J.-S. Lim, Y. Noh, H. Lee, and F. Hoffmann, “The Critical Number and Size of Precipitation Embryos to Accelerate Warm Rain Initiation,” Aug. 2024, doi: 10.5194/egusphere-2024-2636.

F. Hoffmann, F. Glassmeier, and G. Feingold, “The Impact of Aerosol on Cloud Water: A Heuristic Perspective,” Atmospheric Chemistry and Physics, vol. 24, no. 23, pp. 13403–13412, Dec. 2024, doi: 10.5194/acp-24-13403-2024.

 2023

F. Yang, F. Hoffmann, R. A. Shaw, M. Ovchinnikov, and A. M. Vogelmann, “An Intercomparison of Large‐Eddy Simulations of a Convection Cloud Chamber Using Haze‐Capable Bin and Lagrangian Cloud Microphysics Schemes,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 5, Apr. 2023, doi: 10.1029/2022ms003270.

F. Hoffmann and G. Feingold, “A Note on Aerosol Processing by Droplet Collision‐Coalescence,” Geophysical Research Letters, vol. 50, no. 11, Jun. 2023, doi: 10.1029/2023gl103716.

J.-S. Lim and F. Hoffmann, “Between Broadening and Narrowing: How Mixing Affects the Width of the Droplet Size Distribution,” Journal of Geophysical Research: Atmospheres, vol. 128, no. 8, Apr. 2023, doi: 10.1029/2022jd037900.

P. Prabhakaran, F. Hoffmann, and G. Feingold, “Effects of Intermittent Aerosol Forcing on the Stratocumulus-to-Cumulus Transition,” Aug. 2023, doi: 10.5194/egusphere-2023-1720.

P. Prabhakaran, F. Hoffmann, and G. Feingold, “Evaluation of Pulse Aerosol Forcing on Marine Stratocumulus Clouds in the Context of Marine Cloud Brightening,” Journal of the Atmospheric Sciences, vol. 80, no. 6, pp. 1585–1604, Jun. 2023, doi: 10.1175/jas-d-22-0207.1.

J.-S. Lim and F. Hoffmann, “Life Cycle Evolution of Inhomogeneous Mixing in Shallow Cumulus Clouds,” Dec. 2023, doi: 10.22541/essoar.170224522.28596170/v1.

F. Hoffmann, F. Glassmeier, T. Yamaguchi, and G. Feingold, “On the Roles of Precipitation and Entrainment in Stratocumulus Transitions between Mesoscale States,” Journal of the Atmospheric Sciences, vol. 80, no. 12, pp. 2791–2803, Dec. 2023, doi: 10.1175/jas-d-22-0268.1.

D. Oh, Y. Noh, and F. Hoffmann, “Paths From Aerosol Particles to Activation and Cloud Droplets in Shallow Cumulus Clouds: The Roles of Entrainment and Supersaturation Fluctuations,” Journal of Geophysical Research: Atmospheres, vol. 128, no. 16, Aug. 2023, doi: 10.1029/2022jd038450.

J. Kainz and F. Hoffmann, “The Effects of Aerosol on Small‐Scale Cloud‐Environment Mixing: Implications for Simulating and Observing Inhomogeneous Mixing,” Journal of Geophysical Research: Atmospheres, vol. 128, no. 22, Nov. 2023, doi: 10.1029/2023jd038509.

F. Hoffmann, “The Small-Scale Mixing of Clouds with their Environment: Impacts on Micro-and Macroscale Cloud Properties,” Feb. 2023, doi: 10.22541/essoar.167639072.29855421/v1.

A. A. Hill et al., “Toward a Numerical Benchmark for Warm Rain Processes,” Journal of the Atmospheric Sciences, vol. 80, no. 5, pp. 1329–1359, May 2023, doi: 10.1175/jas-d-21-0275.1.

 2022

F. Hoffmann, B. Mayer, and G. Feingold, “A Parameterization of Interstitial Aerosol Extinction and Its Application to Marine Cloud Brightening,” Journal of the Atmospheric Sciences, vol. 79, no. 11, pp. 2849–2862, Nov. 2022, doi: 10.1175/jas-d-22-0047.1.

G. Feingold, P. Prabhakaran, J. Zhang, X. Zhou, and F. Hoffmann, “Exploring the Influence of the Duration of Aerosol Perturbations on Cloud Responses,” Mar. 2022, doi: 10.5194/egusphere-egu22-13537.

F. Glassmeier et al., “Gaussian-process emulation for integrating data-driven aerosol-cloud physics from simulation, satellite, and ground-based data,” Jun. 2022, doi: 10.5194/ems2022-701.

E. Gryspeerdt, F. Glassmeier, G. Feingold, F. Hoffmann, and R. J. Murray-Watson, “Observing short-timescale cloud development to constrain aerosol–cloud interactions,” Atmospheric Chemistry and Physics, vol. 22, no. 17, pp. 11727–11738, Sep. 2022, doi: 10.5194/acp-22-11727-2022.

J. S. Lim, J. Kainz, and F. Hoffmann, “The Present and Future of Lagrangian Cloud Modeling: From the Centimeter to Kilometer Scale,” Jun. 2022, doi: 10.5194/ems2022-471.

2021

F. Glassmeier, F. Hoffmann, J. S. Johnson, T. Yamaguchi, K. S. Carslaw, and G. Feingold, “Aerosol-cloud-climate cooling overestimated by ship-track data,” Science, vol. 371, no. 6528, pp. 485–489, Jan. 2021, doi: 10.1126/science.abd3980.

F. Hoffmann and G. Feingold, “Cloud Microphysical Implications for Marine Cloud Brightening: The Importance of the Seeded Particle Size Distribution,” Journal of the Atmospheric Sciences, vol. 78, no. 10, pp. 3247–3262, Oct. 2021, doi: 10.1175/jas-d-21-0077.1.

J.-S. Lim, Y. Noh, H. Lee, and F. Hoffmann, “LCM ensemble model results with GCCN and TICE effect.” Zenodo, 2021. doi: 10.5281/ZENODO.4718870.

2020

S. Unterstrasser, F. Hoffmann, and M. Lerch, “Collection/Aggregation in a Lagrangian cloud microphysical model: Insights from column model applications,” Mar. 2020, doi: 10.5194/egusphere-egu2020-1997.

S. Unterstrasser, F. Hoffmann, and M. Lerch, “Collisional growth in a particle-based cloud microphysical model: insights from column model simulations using LCM1D (v1.0),” Geoscientific Model Development, vol. 13, no. 11, pp. 5119–5145, Oct. 2020, doi: 10.5194/gmd-13-5119-2020.

F. Hoffmann, F. Glassmeier, T. Yamaguchi, and G. Feingold, “Liquid Water Path Steady States in Stratocumulus: Insights from Process-Level Emulation and Mixed-Layer Theory,” Journal of the Atmospheric Sciences, vol. 77, no. 6, pp. 2203–2215, Jun. 2020, doi: 10.1175/jas-d-19-0241.1.

B. Maronga et al., “Overview of the PALM model system 6.0,” Geoscientific Model Development, vol. 13, no. 3, pp. 1335–1372, Mar. 2020, doi: 10.5194/gmd-13-1335-2020.

F. Glassmeier, F. Hoffmann, J. S. Johnson, T. Yamaguchi, K. S. Carslaw, and G. Feingold, “Ship-track-based assessments overestimate the cooling effect of anthropogenic aerosol.” arXiv, 2020. doi: 10.48550/ARXIV.2005.14159.

 2019

F. Glassmeier, F. Hoffmann, J. S. Johnson, T. Yamaguchi, K. S. Carslaw, and G. Feingold, “An emulator approach to stratocumulus susceptibility,” Atmospheric Chemistry and Physics, vol. 19, no. 15, pp. 10191–10203, Aug. 2019, doi: 10.5194/acp-19-10191-2019.

T. Goren, J. Kazil, F. Hoffmann, T. Yamaguchi, and G. Feingold, “Anthropogenic Air Pollution Delays Marine Stratocumulus Breakup to Open Cells,” Geophysical Research Letters, vol. 46, no. 23, pp. 14135–14144, Dec. 2019, doi: 10.1029/2019gl085412.

M. Maahn, F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, “Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?,” Atmospheric Measurement Techniques, vol. 12, no. 6, pp. 3151–3171, Jun. 2019, doi: 10.5194/amt-12-3151-2019.

F. Hoffmann and G. Feingold, “Entrainment and Mixing in Stratocumulus: Effects of a New Explicit Subgrid-Scale Scheme for Large-Eddy Simulations with Particle-Based Microphysics,” Journal of the Atmospheric Sciences, vol. 76, no. 7, pp. 1955–1973, Jun. 2019, doi: 10.1175/jas-d-18-0318.1.

S. Giersch, M. Brast, F. Hoffmann, and S. Raasch, “Toward Large‐Eddy Simulations of Dust Devils of Observed Intensity: Effects of Grid Spacing, Background Wind, and Surface Heterogeneities,” Journal of Geophysical Research: Atmospheres, vol. 124, no. 14, pp. 7697–7718, Jul. 2019, doi: 10.1029/2019jd030513.

 2018

Y. Noh, D. Oh, F. Hoffmann, and S. Raasch, “A Cloud Microphysics Parameterization for Shallow Cumulus Clouds Based on Lagrangian Cloud Model Simulations,” Journal of the Atmospheric Sciences, vol. 75, no. 11, pp. 4031–4047, Oct. 2018, doi: 10.1175/jas-d-18-0080.1.

J. Schwenkel, F. Hoffmann, and S. Raasch, “Improving collisional growth in Lagrangian cloud models: development and verification of a new splitting algorithm,” Geoscientific Model Development, vol. 11, no. 9, pp. 3929–3944, Sep. 2018, doi: 10.5194/gmd-11-3929-2018.

F. Hoffmann, T. Yamaguchi, and G. Feingold, “Inhomogeneous Mixing in Lagrangian Cloud Models: Effects on the Production of Precipitation Embryos,” Journal of the Atmospheric Sciences, vol. 76, no. 1, pp. 113–133, Dec. 2018, doi: 10.1175/jas-d-18-0087.1.

2017

S. Unterstrasser, F. Hoffmann, and M. Lerch, “Collection/aggregation algorithms in Lagrangian cloud microphysical models: rigorous evaluation in box model simulations,” Geoscientific Model Development, vol. 10, no. 4, pp. 1521–1548, Apr. 2017, doi: 10.5194/gmd-10-1521-2017.

F. Hoffmann, “On the limits of Köhler activation theory: how do collision and coalescence affect the activation of aerosols?,” Atmospheric Chemistry and Physics, vol. 17, no. 13, pp. 8343–8356, Jul. 2017, doi: 10.5194/acp-17-8343-2017.

F. Hoffmann, “Response to Anonymous Referee #1.” Copernicus GmbH, Apr. 2017. doi: 10.5194/acp-2017-134-ac1.

F. Hoffmann, Y. Noh, and S. Raasch, “The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model,” Journal of the Atmospheric Sciences, vol. 74, no. 7, pp. 2125–2142, Jun. 2017, doi: 10.1175/jas-d-16-0220.1.

 2016

S. Unterstrasser, F. Hoffmann, and M. Lerch, “Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations,” Nov. 2016, doi: 10.5194/gmd-2016-271.

A. Spiga et al., “Large-Eddy Simulations of Dust Devils and Convective Vortices,” Space Science Reviews, vol. 203, no. 1–4, pp. 245–275, Sep. 2016, doi: 10.1007/s11214-016-0284-x.

2015

F. Hoffmann, S. Raasch, and Y. Noh, “Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach,” Atmospheric Research, vol. 156, pp. 43–57, Apr. 2015, doi: 10.1016/j.atmosres.2014.12.008.

F. Hoffmann, “The Effect of Spurious Cloud Edge Supersaturations in Lagrangian Cloud Models: An Analytical and Numerical Study,” Monthly Weather Review, vol. 144, no. 1, pp. 107–118, Dec. 2015, doi: 10.1175/mwr-d-15-0234.1.

B. Maronga et al., “The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives,” Geoscientific Model Development, vol. 8, no. 8, pp. 2515–2551, Aug. 2015, doi: 10.5194/gmd-8-2515-2015.

2014

F. Hoffmann et al., “Entrainment and mixing at the interface of shallow cumulus clouds: Results from a combination of observations and simulations,” Meteorologische Zeitschrift, vol. 23, no. 4, pp. 349–368, Sep. 2014, doi: 10.1127/0941-2948/2014/0597.

2013

B. Maronga, F. Hoffmann, T. Riechelmann, and S. Raasch, “Large-eddy simulation of dust devils.” Leibniz Universität Hannover (LUH), Institut für Meteorologie und Klimatologie, 2013. doi: 10.5446/9352.