Springe direkt zu Inhalt
Development of storm Anatol in kinematic fields: Low-level (850 hPa) extended kinematic vorticity number (colour shaded) field considering the sign of vorticity. Positive (negative) values of Wk correspond to cyclones (anticyclones).

Development of storm Anatol in kinematic fields: Low-level (850 hPa) extended kinematic vorticity number (colour shaded) field considering the sign of vorticity. Positive (negative) values of Wk correspond to cyclones (anticyclones).
Bildquelle: Schielicke et. al. (2016)

Kinematic vorticity and the size of cyclones

Betreuer
Stephan Pfahl, Lisa Schielicke, Edgar Dolores-Tesillos
Abschluss
Master of Science (M.Sc.)

Inhalt

Description:

Extratropical cyclones are the precursor of most of the weather at mid-latitude. Model projections have shown storm structural and intensity changes. Changes in storm size could strongly impact society. However, the uncertainties about structural changes, such as cyclone size broadening, are still considerable.

Here, an extratropical cyclone tracks-dataset from the CESM-LE model will be analysed in the present-day and future climate. The kinematic vorticity number (Wk-method) will be applied to the identified storms to determinate the cyclone extension on average at different pressure levels. Finally, the cyclone size response as the climate warms will be investigated.

Prerequisites for this project are an interest in climate change, atmospheric dynamics and willingness to communicate time-to-time in English, as one of the supervisors does not speak German properly. The thesis may still be written in German. First experience with a scripting language (Matlab, Python, etc.) that will be used for the data analysis can be helpful but may also be obtained along with the thesis.

Literature:

  • Catto, J. L., Ackerley, D., Booth, J. F., Champion, A. J., Colle, B. A., Pfahl, S., ... & Seiler, C. (2019). The future of midlatitude cyclones. Current Climate Change Reports, 5(4), 407-420.

  • Kay. J. E. et al., 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc. 96, 1333-1349, doi:10.1175/BAMS-D-13-00255.1.

  • Schielicke, L., Névir, P., & Ulbrich, U. (2016). Kinematic vorticity number–a tool for estimating vortex sizes and circulations. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 29464.