

On influence of wild-land fires on European air quality

Mikhail Sofiev¹, Roman Vankevich², Milla Lanne¹, Ari Karppinen¹, Jaakko Kukkonen¹

¹ Finnish Meteorological Institute

² Russian State Hydrometeorological University

Content

- Introduction
- How to obtain information about wild-land fires?
- Fire Assimilation Systems of FMI
 - > Historical review: use and abuse of v.0.9
 - Provisions for FAS v.1.0
- Modelling assessments of the wild-land fires impact on European air quality in 2006
 - comparison of different types of fire onformation products
- Challenges

wpr-May 2006: Development of the episode

Forecast for: 12:00, 29APR2006

Information sources on fires

- In-situ observations and fire monitoring
 - pretty accurate when/where available
 - costly and incomprehensive in many areas with low population density
- Remote-sensing products
 - burnt area inventories on e.g. monthly basis (registering the sharp and well-seen changes in the vegetation albedo due to fire)
 - hot-spot counts on e.g. daily basis (registering the temperature anomalies)
 - fire radiative power/energy and similar physical quantities on e.g. daily basis (registering the radiative energy flux)
- Impact on air quality is highly dynamic, thus temporal resolution and timeliness play the key role

Fractionation of the fire energy

For moderate fires, the total energy release splits to radiative, convective and thermal-conduction forms as:

 ϵ = Radiation (40%) + Convection (50%) + Conduction (10%)

- The split is valid for a wide range of fire intensity
- The split is stable for various types of land use

Empirical formula for total rate of emission of FRP:

Ef = $4.34*10^{-19} (T_4^8 - T_{4b}^8)$ [MWatt per pixel]

T_{4,4b} is fire and background brightness temperatures at 3.96 μm (*Yoram Kaufman et al*,1998)

Regional AQ forecasting system of FMI

Current Fire Assimilation Systems

- Fire Alert System for Finland
 - > about a decade-old, qualitative fire detection system for Finnish territory
 - > automatically generates alert faxes for the municipal authorities
 - > ATSR + AVHRR (night-time) + MODIS (morning)
- Fire Assimilation System v.0.9 and v.0.99
 - v.0.9: started in spring 2006, updated, recalibrated and automated to v.0.99 in November 2007
 - MODIS (Aqua + Terra) hot-spot counts represented as temperature anomalies: NASA Rapid-Response System
 - evaluates only PM 2.5 directly emitted from fires, empirical emission coefficient (recalibrated to v.0.99)
 - global, daily, 1km in irregular grid;
 - aggregated into 10km regular grid and cut down to European area
- Fire Assimilation System v.1.0

FAS v.0.9: experience

- April-May 2006: spring episode
 - first real test of the new system
 - very decent timing, acceptable absolute levels
 - case published in Atmospheric Environment
 - ≻ But:
 - second day is lost (clouds => no fire reports)

- only PM 2.5 while e.a. in Sweden there was also an ozone peak,

FAS v.0.9: experience (2)

- August 2006:
 - > major fires in the south,
 - Finland is affected by a few small-scale but close-in-space events
- timing again almost perfect
- but:
 - absolute levels are 10-20 times underestimated (!!)
 - fires are on and off many times: convective clouds obscure the reports
 - > a fire field is again pretty homogeneous

Forecast for PM2.5 from forest fires.

Concentration, ugPM/m3, 02Z15AUG2006

Goals for FAS v.0.99 and v.1.0 development

- \rightarrow v.0.99: Recalibrate and streamline the v.0.9 algorithm
- →v.1.0:
 - Improve the evaluation of the emission fluxes by using FRP product
 - better accounting for fire intensity
 - improved spatial distribution of emission fluxes
 - evaluate the uncertainty by comparing the hot-spot- and FRP-based approaches (v.0.99 and v.1.0)
 - extend the list of emitted species
 - Build the baseline system for the next steps
 - variation of emission factors with regard to land-use and vegetation type and state
 - other-than-MODIS satellites as the system input
 - input information for injection height evaluation
 - observation / modelling of fire development and diurnal variation

MODIS fire-related products

FAS v.1.0 information flow

Hot-spot counts vs FRP

Hot spots FRP per-pixel statistical database (time-integrated May-August 2006)

Mark size is proportional to tempr.anomaly

Dot size is proportional to FRP

Area-integrated FRP:time series for 5 months April-August 2006

FERRET Var. 5.51 ND44/FWEL TNAP 9mp 24 2007 18 48-14

SCATEGRIDGAUSS_XY(MLON, MLAT, FP, X[GX-XLON], Y[GY-YLAT], 0.01, 0.01, 10, 10)

Emission coefficients: Ichoku (2005)

Pattern of emission coefficients

 PAGE land-use, 250m => 10km-grid classification of prevailing land-type as a surrogate for emission factors

What/where/when is burning??

• Area-integrated emission from 3 land types for 2006: time series for 5 months April-August

Fire season 2006: PM 2.5 in air (v.0.99 vs v.1.0)

May 3 p

Conc, PM2_5_v.1.0 vert.column, mg/m2 06:00 03MAY2006

August, 7: fire plume along GF

August 9: plume shifted to Finland

10E 15E 20E 25E 30E 35E 40E 5E

Comparison with ground-based observations

Conclusions on current FAS status

- Results of v.1.0 are substantially different from v.0.99
 - spatial patterns differ: a principal difference btw hot-spot counts and FRP
- Ways of evaluation
 - > Direct verification of emission terms is not possible
 - Indirect verification involves SILAM as a bridge from emission fluxes to observed concentrations and AOD
- Results of comparison with observations (so far, qualitative)
 - the major fires create sufficiently strong signal distinguishable from other aerosol sources
 - details of the distribution and quantitative evaluation makes sense only for total aerosol with all sources included: anthropogenic, biogenic, microphysical, natural, fires

Challenges for FAS

- Refine the emission coefficients
 - > land-use as a surrogate: persistent
 - a series of model calibration exercises (and/or AOD assimilation)
 - > dynamic via
 - complementary products (biomass water content, NDVI, soil water, ...)
 - data assimilation of AOD in the vicinity of the fires
- Dynamic injection height
 - small fires: updated BUOYANT model is on standby
 - Iarge fires: deep convection parameterization
- Holes in the data (clouds et al)
 - mix MODIS with other satellites
 - Fire model (parameterization) fed with actual and prognostic variables
- Snapshots to time series: heuristic fire modelling
- Fire forecasts
 - > fire model (parameterization) fed with actual and prognostic variables

Landsat-based 30m land use coverage

Hot spots statistic by land types

Fuel type identification example

Cross validation of Landsat and Iconos land use

Challenges: details (1)

- Refine the emission coefficients
 - > land-use as a surrogate: persistent
 - a series of model calibration exercises (and/or AOD assimilation)
 - > dynamic via
 - complementary products (biomass water content, NDVI, soil water, ...)
 - data assimilation of AOD in the vicinity of the fires

Bog fire plume from Modis

AOD algorithm limitations

IS4FIRES: integrated system development

- WP 1. The detection of wild-land fires and smoke plumes by satellite observation techniques (link to GEMS)
- WP 2. Development of atmospheric dispersion modelling, data assimilation and source apportionment methods
- WP 3. Detection and quantification of particulate matter formed in fires at surface measurement stations, and the related modelling (link to EUCAARI)
- WP 4. Organisation of a forest fire dispersion measurement campaign in the vicinity of the SMEAR2 station, and the related modelling (link to EUCAARI)
- WP 5. Evaluation, analysis and modelling of the aerosol data measured during the TROICA campaign

Thank you for your attention !

• P.S. SILAM operational fire plume forecasts are available form http://silam.fmi.fi