Influence of transatlantic NO₂- and O₃transport on air quality in Europe

Felix Deutsch, Koen De Ridder, Jean Vankerkom, Clemens Mensink

VITO - Flemish Institute for Technological Research, Centre for Integrated Environmental Studies, Mol, Belgium

ACCENT/GLOREAM Workshop, Berlin, 28-30 November 2007

Contents

- 1 Short overview of the BelEUROS-modelling system
- 2 Results
 - Improvement of boundary conditions for BelEUROS
 - Contribution of LRTAP to air quality in Belgium
- 3 Conclusions

Short overview of BelEUROS

- EUROS created by RIVM (Netherlands) for modelling of ozone
- in Belgium implemented in 2001 for ozone
- in 2004/2005 EUROS extended by VITO with two modules for modelling primary and secondary particulate matter (PM_{10} , $PM_{2.5}$)
- Meteo: ECMWF (T, rH, wv+wd, CC, PR, mixing layer height)
- Emissions: EMEP/CORINAIR; additionally local emission inventories with higher resolution, e.g. for Belgium
- Chemistry: for O_3 , NO_x : Carbon Bond IV (CB-IV) gas phase mechanism, for PM_{10} , $PM_{2.5}$: CACM + aerosol module MADRID 2
- Resolution: horizontal: 60 km/15 km or 7.5 km; vertical: 4 layers (chemistry), 14 layers: advection

Overview of the BelEUROS-modelling system - base grid -

Refined grid: resolution 15 km x 15 km (or 7.5 km x 7.5 km)

Overview of the BelEUROS-modelling system - emissions -

• 6 pollutants

8 emission sectors

Results

required input data:

- <u>meteorology</u>: 3-D fields of wind speed & direction, temperature, humidity, cloud cover, precipitation, mixing height (ECMWF)
- <u>emissions</u>: per pollutant (NO_x, VOCs, ...) and per sector (traffic, industry, biogenic)

but additionally

<u>boundary conditions</u>: concentrations of O₃, NO₂ and all other chemical species at the boundaries of the model domain (up to now climatological values); these lateral boundary values were specified as long-term (monthly) mean concentrations), but no actual concentrations for a certain period

Results

Methodology for improved boundary conditions for the BelEUROS-model

 Retrieval of 3-D concentration fields of all chemical species of the CB-IV mechanism from the global TM4 model and interpolation to the lateral grid cells of BelEUROS to replace the climatologies

Results – improved boundary conditions TM4 concentration field

Results – improved boundary conditions

Nesting of BelEUROS into TM4 concentration fields; dotted line shows the border of the BelEUROS domain

confidential – © 2006, VITO NV – all rights reserved

Results – improved boundary conditions

14 December 2007

confidential - © 2006, VITO NV - all rights reserved

NO₂: Comparison of TM4 BC and BelEUROS climatology

14 December 2007

Tropospheric column density of NO2 on 25th of December 2005 from OMI observations (Mijling et al., 2007)

14 December 2007

Results: Improved Boundary Conditions

Ozone concentrations at the Western boundary of the BelEUROS domain simulated by TM4

Ozone: Comparison of TM4 BC and BelEUROS climatology

confidential - © 2006, VITO NV - all rights reserved

Impact of transatlantic O₃ transport on European O₃-levels

relative difference between calculation with and without ozone transport from the western boundary;

Belgium: 37 % annual mean contribution

Impact of transatlantic O_3 transport on European air quality (O_3)

Reduction of western	Ozone reduction in Belgium		
boundary ozone [%]	mean winter	yearly mean	Max. 1h summer
25	23,3	11,7	6,4
50	42,9	22,3	11,8
100	69,5	39,5	18,5

Highest influence of boundary ozone in Belgium in the winter, lowest influence on summer ozone peaks

Impact of transatlantic O_3 transport on European air quality (O_3)

Impact of transatlantic NO₂ transport on European NO₂-levels

Mean tropospheric NO2 column for the year 2004 from SCIAMACHY (KNMI/IASB/ ESA); from www.temis.nl

confidential - © 2006, VITO NV - all rights reserved

Conclusions

- Nesting of the components of the ozone chemistry of BelEUROS into TM4 concentration fields resulted in more realistic representation of long range transport of air pollutants in BelEUROS simulations.
- 2) This improved the model performance, especially on ozone simulations in winter/spring/autumn.
- 3) Calculations showed a high impact of transatlantic O_3 -transport on annual mean O_3 concentrations in Europe.
- 4) Transatlantic NO_2 -transport can have an impact on NO_2 concentrations during episodes, but the influence on annual mean values is very limited.

Outlook

- Impact of O_3 transport on NO_2 concentrations is still to be investigated.
- Model performance is expected to benefit from a further improvement of boundary conditions by using Earth Observation data, also for the fine particulate matter species
- Further improvement of boundary conditions for the BelEUROS model:
 - nesting of the fine particulate matter version of BelEUROS into TM4 concentration fields (PM_{2.5}, NH₄⁺, SO₄²⁻, NO₃⁻)
 - using Aerosol Optical Depth (AOD) data for improved boundary conditions, taking LRT of fine particulate matter into consideration
 - using tropospheric ozone data for improved boundary conditions and LRT of ozone

Acknowledgement

- Thanks to Bas Mijling (KNMI) for providing us with the TM4 concentration fields
- Thanks to ESA for financial support within the TEMIS project

