Modelling air quality in the Lake Baikal region

Clemens Mensink¹, Karen Van de Vel¹, Koen De Ridder¹, Felix Deutsch¹, Joachim Maes¹, Artash Aloyan², Alexander Yermakov², Vardan Arytyunyan², Tamara Khodzher³

¹VITO - Flemish Institute for Technological Research, Centre for Integrated Environmental Studies,

²Russian Academy of Sciences – Institute for Numerical Mathematics, Moscow

³Russian Academy of Sciences – Siberian Branch – Limnological Institute, Irkutsk

Contents

Objectives of the study The AURORA model Results and discussion Conclusions

1. Objectives

- Bilateral scientific co-operation between Russia (INM-RAS) and Flanders (VITO) with the aim:
 - to mutually exchange expertise on transportchemistry modelling and aerosol physics and chemistry in order to attain improved atmospheric modelling capabilities in both countries
 - to perform a joint validation study for simulation domains in Russia and Flanders

Studying aerosol formation in the Antwerp area

Modelling air quality in the lake Baikal region

Contents

Objectives of the study The AURORA model Results and discussion Conclusions

2. The AURORA model

Air quality modelling in Urban Regions using an Optimal Resolution Approach

- 3-dimensional Eulerian grid model for meteorologyemissions-transport-chemistry
- different scales : regional -> urban scale, street-box submodel
- meteorology from ARPS model (wind, turbulent diffusion, temperature, ...)

2. The AURORA model

- emissions from various sectors : traffic, industry, domestic combustion, biogene emissions, ...
- transport : Walcek advection, Crank-Nicholson diffusion
- chemistry :
 - Carbon-Bond IV gas-phase chemistry with isoprene, limited PM
 - CACM gas phase mechanism + MADRID2 aerosol module
 - PAH (Polycyclic Aromatic Hydrocarbon) version
- output : hourly gridded pollutant concentrations (O3, PM10, PM2.5, NO2, benzene, PAH, ...)

advection

Surface module: LAICa

validation meteorology (T, q, R_s)

validation O₃ concentrations

Contents

Objectives of the study The AURORA model Results and discussion Conclusions

3. Results for lake Baikal

- Lake Baikal is the largest fresh water lake in the world
- The region is characterised by complex terrain, consisting of steep and densely forested hill slopes surrounding the lake
- A challenge with respect to the correct simulation of atmospheric dynamics and turbulence.
- Emissions: few large point sources, which are the dominant sources of air pollution in this area, but no information on other emissions in a wider area

ARPS – AURORA coupling and nesting

AURORA :: nesting levels

AURORA input: terrain data for 3-km domain

Domain: 150km x 150km @ 3km resolution Terrain data:

- vegetation information
- land use
- sea surface temperature : MODIS
- topography

- : VEGETATION / SPOT
 - : GLC2000

 - : Digital Elevation Model

19

AURORA input: emission data

- Two approaches :
 - Bottom up
 - local emission = activity × activity factor
 - Top down
 - local emission = proportion of total emission
- Top down emission modeling :

Emission inventory at low resolution

Geographical databases : land use, population density, road networks, large point sources, ... Gridded emission data at high resolution

Top down emission modelling :: NOx emissions from EDGAR database

EDGAR 3.2 database provides emission data for 1995 :

- on a 1x1 degree grid
- per country

AURORA: input emission data

NOx emissions for 30km, 10km and 3km resolution domains

AURORA: input emission data

SO2 emissions for 3km resolution domains

ARPS: meteo results

average temperature, July 2003 : - Baikal lake : hotter water - city of Irkutsk: urban heat island

24

ARPS: validation meteo

ARPS: day and night breezes

AURORA: average concentration fields

SO2 and NO2 concentration fields for the 10km resolution domain

AURORA: modelled SO2 concentrations

AURORA: validation SO2 concentrations

Contents

Objectives of the study The AURORA model Results and discussion Conclusions

4. Conclusions

- Modelling air quality in this part of the world is a challenge !
- The ARPS model can predict some part of the dynamics, especially in the first part of July.
- Emission data are difficult to obtain.
- Background SO₂ concentrations (Mondy) seem ok, but the SO₂ concentrations near the main sources are overestimated by +/- a factor of two.
- Further analysis of the results is needed

And... yes, this was also part of the bilateral co-operation...

