Springe direkt zu Inhalt

M. Sc. Forough Marzban


Freie Universität Berlin

Institut für Meteorologie

Arbeitsgruppe Stadtklima und Gesundheit


Institut für Meteorologie
Carl-Heinrich-Becker-Weg 6-10
Raum 070
12165 Berlin


seit 2014

Doktorandin in der AG Stadtklima, Institut für Meteorologie, Freie Universität Berlin


M. Sc, Computer Engineering Expected (Artificial Intelligent), Islamic Azad University Science and Research branch, Tehran, Iran 

Thema: "Identification and Predication of Chaotic time series by using Dynamic Neural  Network Discrete time"


B.Sc.Computer Engineering(Software), Iran University of  Science and  Technology, Tehran, Iran

Thema: "Review and implementation of a parallel algorithm 2PL and TS and concurrency control in Data Base"

Relevant Courses that I passed:

  1. Data Mining(19/20)
  2. Machine learning(18/20)
  3. Artificial Intelligent(18/20)
  4. Fuzzy System(14.5/20)
  5. Advanced Artificial Intelligence(18/20)
  6. Natural Processing language (18.5/20)
  7. Distributed Artificial Intelligence(18.5/20)
  8. Seminar(subject: surveying of Neural Network stability )(20/20)


Technical Skills:

Programming Proficient in C, C++, c#, Assembly, Matlab.

Familiar with Prolog, UML Methodology, Mysql,

OS: Linux, Windows.

Teaching Experience:

I have taught since 2008,below courses in some universities and institutes:

  1. Data structure
  2. Computer architecture
  3. Logical circuit
  4. Logical circuit labratory
  5. Algorithm design
  6. Artificial Intelligent
  7. Operating system
  8. Programming(C++,C#, Assembly)
  9. Data Base
  10. Soft Engineering


Marzban, Forough and Conrad, T. O. F. and Marzban, Pouria and Sodoudi, Sahar (2018):Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin, Germany. International Journal of Advanced Remote Sensing and GIS, 7 (1). ISSN 2320-0243

Forough Marzban, Sahar Sodoudi & René Preusker (2018): The influence of land-cover type on the relationship between NDVI–LST and LST-Tair. International Journal of Remote Sensing, Volume 39, 2018 - Issue 5