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[1] A new method is introduced for quantifying the scale and the intensity of strain
localization from maps of natural shear zones. The method employs autocorrelation
functions to determine local areal scales of geometric homogeneity. These homogenization
scales are used to calculate scale-dependent localization fractions of deformed rock. The
strain localization intensity is quantified from measurements of mean relative to maximum
shear strain. This approach is used to analyze shear zones on different scales from an
exposure (Cap de Creus, Spain) of the fossil brittle-to-viscous transition (BVT). Changes
in the scaling characteristics of shear zones are interpreted to reflect a time sequence of
localization during the evolution of the continental BVT. We show that shear zone scaling
is related to inherited anisotropies (older schistosity, lithological layering, pegmatite
bodies) and to the predominant mode of deformation (brittle, viscous). The length-to-
width ratio of shear zones increases with their length up to the meter scale and decreases
for larger length scales as they evolve from isolated shear fractures to interconnected
mylonitic shear zones. Variations in strain localization intensity calculated along a single
shear zone indicate that such shear zones weakened from their brittle tips to their mylonitic
centers, thus driving their propagation and growth to larger scales. Our results imply that
the BVT evolves by ‘‘network widening,’’ a process whereby strain localizes on
progressively larger scales until a dense network of weak, mylonitic layers tens to
hundreds of meters wide and hundreds to thousands of meters long forms subparallel to
the regional shearing plane.
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1. Introduction

[2] Rock deformation is observed to be homogeneous on
some length scales and heterogeneous on others [e.g.,
Means, 1976; Poirier, 1980; Ramsay, 1980], but the sys-
tematic determination of these scales has remained an
unresolved problem almost since the first detailed descrip-
tions of rock deformation (e.g., Heim [1878] as cited by
Milnes [1979]). This problem has been compounded by the
methodological challenge of quantifying deformational het-
erogeneity on the broad range of scales over which such
heterogeneity occurs in nature, from the width of mineral
grains (microns-millimeters) to the length of plate boundary
faults (102–104 km). Heterogeneous rock deformation on
all these scales is manifested by discrete zones of displace-
ment, termed shear zones, that are characterized by finite
strain gradients both parallel and perpendicular to their

length (Figure 1) (e.g., reviews by Ramsay [1980] and
Carreras [2001]). At high strains, isolated shear zones link
up to form a network of anastomosing shear zones that are
oriented parallel to subparallel to the bulk shearing plane
(Figures 1a–1c). The question arises of how such networks
evolve in time and space, specifically whether the process of
networking of shear zones involves changes in the charac-
teristic length scales of shear zones and the mechanical
properties of the sheared rocks (e.g., effective mechanical
layer thickness, rheology).
[3] We use the term ‘‘scale’’ as a general expression for

absolute spatial measures throughout this paper (in contrast
to ratios common in maps). ‘‘Areal scale’’ refers to the size
of an area, e.g., the total size of a shear zone in two
dimensions. The length and width of a shear zone are
measured along lines, respectively, subparallel and subper-
pendicular to the shearing plane (see definitions and mea-
suring techniques in section 2.1).
[4] A network of shear zones narrows with increasing

length when strain is progressively localized into fewer and
narrower shear zones during their growth parallel to the
shearing plane, while surrounding shear zones are deacti-
vated. This evolution is termed ‘‘network narrowing’’ as
opposed to ‘‘network widening’’ where initially isolated
shear zones widen and coalesce, leading to the formation of
a shear zone that is wider than the initial shear zone array
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(Figures 1a–1c). Both network widening and network
narrowing are processes that have been inferred for natural
fault systems (network widening [Fusseis et al., 2006]
and network narrowing [Walsh et al., 2001; Ben-Zion and
Sammis, 2003, and references therein]) and observed in
deformational experiments (network widening [Herwegh
andHandy, 1996, 1998] and network narrowing [Tchalenko,
1970]). Yet the characteristic scales of deformational het-
erogeneity during these contrasting evolutions have never
been quantified empirically for brittle-viscous shear zones.
[5] The need to quantify the scale of localized deforma-

tion arises from the desire to relate scaling characteristics to
the micromechanisms of strain localization, as well as to
rock physical attributes like anisotropy (a foliation, elongate
minerals or mineral aggregates [Dutruge et al., 1995]) and
rheology [Paterson, 2001]. Past scaling studies of deforma-
tion have invoked fractal statistics to define a range of
geometric-scale invariance [Mandelbrot, 1982; Turcotte,
1990; Bonnet et al., 2001; Lei et al., 2003] for structures
that may be diagnostic of the deformation mechanisms in
the rocks analyzed. For example, Hippertt [1999] found that
the spacing and aspect ratio of S and C shear surfaces in
mylonite satisfy a fractal (i.e., power law) distribution over
6 orders of magnitude (micron to kilometer scales). Fractal
dimensions have also been used to scale fault systems in the

upper, brittle part of the continental crust [Cowie and
Scholz, 1992; Bonnet et al., 2001, and references therein].
A drawback of this approach is that more than one rock
physical attribute can influence the fractal dimension, espe-
cially when one considers a broad range of scales. This is
especially true of rocks deformed at the transition from
pressure-dependent frictional sliding to thermally activated,
viscous creep (henceforth termed the brittle-viscous transi-
tion, or BVT), where several competing deformation mech-
anisms accommodate roughly equal amounts of strain
[Handy et al., 2007]. Deviations from a fractal distribution
may also reflect smaller-scale heterogeneities that induce
strain incompatibilities and therefore govern rock mechan-
ical behavior on larger scales [Ackermann et al., 2001].
Thus an analytical scaling method is needed that enables
higher spatial resolution and that takes into account the
changing physical and kinematic boundary conditions dur-
ing progressive deformation.
[6] In this paper, we introduce a new method for quan-

tifying both the scale and the intensity of strain localization
from areal images of natural shear zones. The method
employs autocorrelation functions (ACF) to determine local
areal scales of geometric homogeneity, so-called elementary
reference areas. These elementary reference areas allow us
to calculate the fraction of rock that is deformed above a

Figure 1. Stages in the development of a brittle-viscous shear zone network, modified from Fusseis et
al. [2006] (with permission from Elsevier). (a) Nucleation. Shear zones initiate as shear fractures (thick
grey lines) that propagate (arrowheads) parallel to the horizontal shear plane or obliquely along the
existing S1/2 schistosity (thin black lines). The fractures become mylonitic shear zones (thick black lines)
once a critical strain has accrued. The width of the fault array is denoted by the bar at the right of the
diagram. (b) Fault linkage. Upon reaching a critical length, mylonitic shear zones link horizontally and
obliquely along step over shear zones oriented parallel to S1/2. A network is established and the width of
the shear zones within this network increases. (c) Lateral homogenization. Mylonitic deformation
dominates as the network continues to widen. Lozenges of host rock rotate and are progressively
overprinted (note the rotated, relict S1/2 foliation). (d) Close-up of a segment of mylonitic shear zone
(shear plane labeled ‘‘C’’) showing drag folds of S1/2 that indicate heterogeneous shearing. (e) Schematic
shear strain profile across shear zone in Figure 1d. (f) Effective viscosity profile for shear strain profile in
Figure 1e [after Handy, 1994].
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background level of strain for any given areal scale. In a
parallel step, the intensity of strain localization is quantified
as the normalized difference of maximum and mean shear
strain for any regarded shear zone. We then apply this new
method to shear zones from an exposure of the fossil brittle-
viscous transition at the Cap de Creus in NE Spain. It is
shown that peaks in the scale and intensity of strain
localization are related to a combination of existing aniso-
tropies and the linkage of brittle-viscous shear zones. The
scaling relationships change systematically with shear zone
length, a feature which we term ‘‘multiscaling’’.We conclude
with a conceptual model for the growth and coalescence of
shear zones at the BVT involving strain localization on
progressively larger scales.

2. Methods

2.1. Parameterization of Shear Zones

[7] We will assume for the sake of simplicity that
deformation is isochoric and involves simple shear. Al-
though natural deformation is usually three-dimensional,
the deformation in many shear zones analyzed so far is
nearly plane strain and highly noncoaxial [Ramsay, 1980;
White et al., 1980]. This is also the case for the shear zones
analyzed below (see section 3.1), so that all shear zones
considered in this paper are viewed in or near the XZ plane
of the bulk finite strain ellipsoid (X, shear direction; Z,
normal to the shear (XY) plane). Two-dimensional defor-
mation is obviously easier to quantify with our method, but
its principles can be extended to three dimensions. The
shear zones analyzed below are mylonitic except at their
brittle tips [Fusseis et al., 2006], such that deformation is
regarded to have been nearly isochoric with only limited
dilation.

[8] The shear zone area, Aloc, is easily determined from a
flat image (map or thin section photo) taken parallel to the
XZ plane of the finite strain ellipse with k = 1 by
measuring the area inside the borders of a shear zone.
The borders are defined as points on a rock surface where
the shear strain increases from zero or some average
background value (outside the shear zone) to finite values
greater than the outside value [Ramsay and Graham, 1970].
In other words, the border is formed by points at which @g/
@Z = 0, where g is the shear strain. In foliated rocks like
those at the Cap de Creus, it is convenient to define shear
zone borders as lines on the outcrop surface where a
passive or nearly passive marker (in this case, the trace
of the existing schistosity) deviates from a background
initial orientation, 8i (Figures 2a, 3c, and 3d). The shear
zone border is therefore an isogon corresponding to zero
deviation of the trace of S surfaces in the rock.
[9] The shear zone center is defined as a line connecting

points of maximum deviation (i.e., maximum shear strain)
of each (deformed) marker line from its initial orientation
(Figure 2a). The shear zone length is the length of the line
defining the shear zone center between the shear zone tips.
The shear zone width is the distance between borders as
measured normal to the shear zone center at the location of
maximum displacement.
[10] These criteria could not be used for the largest-scale

data due to the lack of appropriate markers on this scale
(Figure 4). In order to establish a robust, reproducible
measurement strategy and enable automated image analysis,
the method was simplified. The shear zones were vectorized
as polygons from the map of Fusseis et al. [2006]. Feret’s
diameter (i.e., the longest distance between any two points
along the shear zone boundary, Figure 2b) was determined
with the image analysis software ImageJ and taken as shear
zone length. The width was measured at the thickest part of

Figure 2. (a) Schematic view of an isolated shear zone showing main geometrical elements, including
deformation of ideally passive markers (oblique solid lines). The grey area with the dashed outline marks
the shear zone area, Aloc. Outside Aloc, markers have an initial orientation of angle fi (bottom right
corner) to the horizontal shearing plane. Inside Aloc, markers are rotated (i.e., deformed), and their
tangents have an orientation differing from fi, for example, at point P1. Compare the tangential angle fP1

to fi (bottom right). The shear zone center is defined at points where the angle fP1 has a maximum
deviation from fi (black dots, example labeled Pmax). The line linking these points defines the shear zone
length. Shear zone width is measured normal to its length at the point of maximum displacement. ARA

determined for this hypothetical example is represented as a black square with sides of length rRAs.
(b) Feret’s diameter and shear zone width for large-scale example.
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the shear zone in a direction normal to the strike of the shear
zone at that point (Figure 2b).

2.2. Scaling Parameters

[11] At least three parameters are needed to quantify
strain localization on all scales: (1) the proportion of
localized deformation per area of rock on a given scale;
(2) the scale dependence of this proportion; and (3) the
degree or intensity of the localization on a given scale. We

refer to these three parameters, respectively, as the locali-
zation fraction (LfRA), the scale dependence factor (LfRA as
a function of shear zone length and width), and the
localization intensity factor (Iloc). Here, we introduce these
parameters in turn before applying them to determine the
scaling properties of some natural shear zones. We note that
the approach adopted below can be modified and applied to
other structures such as folds. However, this is beyond the
scope of our paper.

Figure 4. Maps of the Cap de Creus shear zones [after Carreras, 2001] (with permission from
Elsevier). (a) Location of the Northern Shear Belt along the northern border of the Pyrenees. (b) Traces of
the shear zones (white) and older S1/2 foliation (dotted lines) on the 100- to 1000-m scales. Notice
locations of Figures 5, 6, and 7. Two small-scale data sets were collected at or near Rabasser (Figures 8,
9, 11, and 12); the shear bands referred to in the text as ‘‘Rabasser Metapelites’’ are shown in Figure 6
and labeled as such here. The ‘‘Rabasser Quartzites’’ are located at Rabasser.

Figure 3. Idealized shear strain distributions for two end-member types of shear zones. Displaced
markers and shear strain profiles are less heterogeneous (a) for the shear zone with low strain localization
intensity than (b) for that with the high strain localization intensity. The shear zones have the same mean
shear strain, gmean, and displacement, but the maximum shear strains, gmax, differ. Shear zones in marble
with (c) low and (d) high strain localization intensities have different shear strain profiles (see text).
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2.3. Strain Localization Fraction, LfRA
[12] Discretely structured matter is usually treated as a

continuum by averaging its properties in space based on
empirical considerations [e.g., Lai et al., 1996] and deter-
mining a homogenization scale or volume [Bonnet et al.,
2001]. This is termed the ‘‘representative elementary vol-
ume’’ (REV) and is the smallest volume of the material
containing all heterogeneities that appear statistically ho-
mogeneous at the scale of observation [Paterson, 2001].
The averaged mechanical properties of the REV are as-
sumed to control material behavior at larger scales.
[13] By analogy with the REV for three-dimensional

strain, we define a ‘‘representative reference area’’, ARA,
for two-dimensional deformation (Figure 2a) on a rock
surface that contains undeformed host rock as well as all
heterogeneities, such that together, they appear statistically
homogeneous on the scale of observation. By calling this a
representative reference area, we emphasize that the statis-
tically homogeneous areas are used as a reference for
defining the proportion (localization fraction) of sheared
material at a given scale. As shown below in the next
section, representative reference areas can be defined on
several scales for the shear zones of the Cap de Creus.
[14] The localization fraction LfRA is then defined as the

ratio

LfRA ¼ Aloc

ARA

; ð1Þ

where ARA has been defined above (Figure 2a). LfRA is a
dimensionless measure of how much area a particular shear
zone covers compared to a statistically homogeneous area
of host rock, i.e., the areal fraction of a shear zone in ARA.
[15] Determining the reference area, ARA, is crucial and

therefore requires closer explanation. Consider a foliation
map for rock containing a shear zone (Figure 2a). Three
types of points on the map can be distinguished: (1) points
within the shear zone, where marker lines deviate from their
orientation outside of the shear zone; (2) the shear zone
boundary; and (3) points outside the shear zone, where
marker lines have an orientation or range of orientations that
are regarded as initial or undeformed. These points are
distinguished by comparing the orientation of tangents to
the marker lines, 8P, all along these lines to a mean
orientation interval of the initial, nonlocalized marker line,
8i, away from the shear zones (Figure 2a). If an orientation
8P does not equal 8i, it is regarded as a localized orientation,
8loc. At a point with orientation 8loc, the marker line was
rotated out of its initial orientation and hence has been
sheared. The parameter 8loc is an angle interval because
markers in most shear zones are subject to heterogeneous
simple shear [Ramsay and Graham, 1970].
[16] Obviously, the resolution of the shear zone bound-

aries is best for small variations in the marker orientation
outside of the shear zone. For small variations, it is conve-
nient to use the arithmetic mean and standard deviation of 8i
to define one initial (undeformed) orientation angle interval.
In nature, however, 8i often fluctuates across the outcrop
surface due to folding or shearing prior to the activity of the
shear zone in question. In this case, it is convenient to give 8i
as an angular interval corresponding to the upper and lower
limits of all nonlocalized orientations. If 8i is highly variable,

then the image must be divided into subdomains, each with
different local values of 8i.
[17] Once 8i and 8loc are defined, the map is covered with

a grid of square search windows of a given size. For each
window, the mean foliation orientation is determined by
ACF. Each window is assigned being an element of either 8i
(host rock) or 8loc (shear zone) based on its mean foliation
orientation. Then the relative frequency of search windows
with a localized orientation is calculated for this given grid
(see Figure A1). This procedure is repeated for various
search window sizes. ARA is defined as the area of the
search window for the size of which 5% search windows
with a localized mean orientation occur in the entire map.
Hence if a search window with the area of ARA is placed on
the map at a randomly selected location, there is a 95%
probability that this search window will contain a homoge-
neous, nonlocalized foliation pattern. The choice of a 95%
probability boundary to define ARA is arbitrary but yielded
good results for the image data below and in the work of
Schrank [2004]. It is also a common confidence boundary
in statistics [e.g., Robinson and Bevington, 2003]. A higher
probability boundary results in a larger ARA, possibly even
greater than the area of the map regarded. This must be
avoided because an ARA larger than the considered map
would satisfy the homogeneity condition only if heteroge-
neities outside the map were distributed in the same way as
in the map. This can be assumed, but may be unrealistic. A
higher boundary would also yield smaller values for LfRA
which is mathematically inconvenient. If ARA cannot be
determined for a given map, then the scale of observation is
too small to satisfy the geometric homogeneity condition
given above. A map of the same resolution but covering a
larger area should be used. Note that ARA is an abstract area
that satisfies the condition of statistical geometric homoge-
neity. Because of its derivation from a square search grid,
we depict it as a square (Figure 2a) with sides of length rRAs.
ARA can also be represented as an isotropic area, i.e., a
circle with diameter rRAc. The procedure for deriving ARA

from foliation maps with ACF is described in detail in
Appendix A.

2.4. Strain Localization Intensity Factor, Iloc
[18] The amount and distribution of strain can vary within

a given shear zone area, Aloc (Figure 3). In fact, shear strain
usually varies both across and along shear zones [e.g.,
Ramsay and Graham, 1970], and this variation becomes
more pronounced with increasing finite shear strain [Fusseis
et al., 2006]. We define strain localization intensity to be the
amplification of shear strain above an average value of
shear strain in the same shear zone. Strain localization
intensity is illustrated in Figure 3 by profiles of shear strain
versus distance across the centers of two hypothetical shear
zones. The shear zone with weakly localized (i.e., less
heterogeneous) strain has a broad strain profile with a flat
top (Figure 3a), whereas the shear zone with strongly
localized strain has a profile with a high narrow peak above
a wide, low base (Figure 3b). The latter profile indicates a
greater strain localization intensity because higher shear
strains are concentrated in a narrower zone, i.e., the shear
strain is distributed more heterogeneously. Thus the shape
of the shear strain profile is diagnostic of the variability and
intensity of strain localization within a shear zone.
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[19] Natural shear zones often have irregular, asymmetric
shear strain profiles [Ramsay and Graham, 1970, Figure 16;
Lamouroux et al., 1994] that require complicated mathe-
matical descriptions to quantify strain localization. To avoid
these complications, we propose using a combination of the
easily obtainable, geologically relevant parameters, gmean

and gmax, to describe the intensity of strain localization
across shear zones. The parameter gmean is the average shear
strain of the shear zone, whereas gmax is the maximum shear
strain within the shear zone (Figure 3). The parameter gmax

can be calculated from the angles of deflected and unde-
flected markers with the relationship [Ramsay and Graham,
1970]

gmax ¼ cot a� cot a0; ð2Þ

where a is the initial angle (i.e., undeformed orientation) of
a marker line and a0 is the angle of maximum deflection
within the shear zone, both measured with respect to the
shear plane. The parameter gmean can be obtained from the
relation

gmean ¼
d

W
; ð3Þ

where d is the total displacement along a shear zone of
width W measured at the same location as the strain profile
above. If strain markers are available, the displacement can
be measured directly. Otherwise, it may be determined from
the area under the strain profile curve according to the
relation [Ramsay and Graham, 1970]

d ¼
ZW

0

gdZ ð4Þ

For weakly localized profiles, gmean is close to gmax. The
difference of gmean and gmax is small (Figure 3a). For
strongly localized strain profiles, gmean is small due to the
high proportion of small shear strain values. The difference
of gmean and gmax is large (Figure 3b). The difference of
gmean and gmax normalized to gmax is used as a measure of
strain localization intensity, Iloc,

Iloc ¼
gmax � gmeanð Þ

gmax

¼ 1� gmean

gmax

: ð5Þ

For shear zones with weakly localized strain profiles, i.e.,
low strain localization intensity, the ratio of gmean to gmax is
large and Iloc tends to zero. Shear zones with strongly
localized profiles and high strain localization intensity have
small ratios of gmean to gmax, so Iloc tends to one. Natural
examples of shear zones with low and high strain intensities
are shown in Figures 3c and 3d.

3. Application of Scaling Methods to the Shear
Zones at the Cap de Creus, NE Spain

3.1. Geology of the Shear Zones

[20] Shear zones of the Northern Shear Belt at the Cap
de Creus peninsula of NE Spain (Figure 4) are ideally

suited for testing the scaling methods developed above.
This shear belt is a deeply eroded part of a fossil, intraplate
fault that accommodated dextral motion in Early Permian
time [Carreras, 2001]. The shear belt evolved during a
continuous deformational event that initiated at upper am-
phibolite-facies conditions [Carreras and Druguet, 1994;
Druguet et al., 1997; Alfonso et al., 2003; Bons et al., 2004]
and ended under retrograde greenschist-facies conditions at
�350�C and 0.3 GPa [Druguet, 2001]. The greenschist-
facies shear zones analyzed below formed in metasediments
that are lithologically heterogeneous, with preexisting, alter-
nating micaceous and quartz-rich sequences up to tens of
meters thick. These sequences represent both sedimentary
layering (centimeter to 10-m scale, S0) and a dominant
transposed, composite foliation (millimeter to centimeter
scale, S1/2) [Carreras, 2001]. These features are shown
below to affect the scaling of the shear zones. S1/2 is
orientated regionally at high angles (70�–90�) to the mylo-
nitic shearing plane of the greenschist-facies shear zones that
contain a mylonitic foliation, S3 (Figure 4b) [Carreras,
2001; Fusseis et al., 2006]. Adjacent to these shear zones,
S1/2 is deflected toward the shearing plane. S1/2 therefore
serves as an excellent marker for the quantification of
displacement and strain [Fusseis et al., 2006]. Pegmatites
and granitoids concordant to S1/2 are cut by and therefore
predate the greenschist-facies shear zones. These magmatic
rocks are inferred to have intruded syntectonically at the
peak of upper amphibolite-facies metamorphism [Carreras
and Druguet, 1994; Druguet and Hutton, 1998; Alfonso et
al., 2003; Bons et al., 2004].
[21] To interpret the scaling characteristics of the shear

zones, it is crucial to understand their evolution as inferred
from a spatial sequence of strain and structures observed
across the Cap de Creus peninsula. We follow the model of
Fusseis et al. [2006] which is briefly summarized here: The
shear zones nucleated as shear fractures parallel to the later
mylonitic shearing plane (Figure 1a). These fractures are
filled with the same retrograde, greenschist-facies minerals
that make up the S3 mylonitic foliation, indicating that
fracturing clearly postdated amphibolite-facies conditions
and was temporally related to the development of the
mylonitic shear zones [Fusseis and Handy, 2006; Fusseis,
2006, chapter 4]. Individual fractures never exceed 3 m in
length, although multiple strands of composite brittle faults
occasionally reach maximum lengths of 10 m. Most frac-
tures are flanked on either side by drag folds with rounded
hinges that apparently formed by ductile, mylonitic flow.
This indicates coeval activity of brittle and viscous defor-
mation mechanisms. Increasing displacement on the frac-
tures was associated with the development of a mylonitic
foliation along their central segments establishing a vis-
cously deforming shear zone center, while their tips contin-
ued to propagate (Figures 1a and 1b) [Fusseis, 2006,
chapter 4]. This is interpreted as the onset of a strain-
dependent BVT. In this way, the shear zones lengthened,
widened, and eventually interconnected to form a network
of mylonitic shear zones (Figure 1b). The linkage of the
shear zones therefore represents a strain-dependent switch
from dominantly brittle to dominantly viscous deformation
on the scale of the shear zone network. The network
comprises main shear zones oriented parallel to the bulk
shearing plane linked by step over shear zones that propa-
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gated parallel or at low angles to S1/2 (Figures 1a–1c), but
at high angles to the main shear zones. The network
encloses lozenges of less deformed country rock that were
progressively overprinted as the shear zones broadened and
the step over shear zones rotated (Figures 1b and 1c).
Deformation therefore homogenized on a larger scale than
at the onset of strain localization (network widening,
Figures 1a–1c).
[22] Most of the large-scale shear zones in Figure 4b dip

moderately to steeply toward the NE (mean azimuth orien-
tation 028/50 NE) with their mean stretching lineation

(azimuth orientation 30/332) gently plunging to the NW
[Carreras, 2001]. Slip line analysis of the mylonitic folia-
tions and stretching lineations in the shear zone network
reveals that deformation was highly noncoaxial on the scale
of the network [Fusseis et al., 2006].

3.2. Determination of LfRA for Different Scales

[23] LfRA was determined for shear zones mapped from
photographs of thin sections and outcrops, aerial photo-
graphs, and a structural map of the Cap de Creus peninsula
(Figures 4–7). LfRAwas then plotted against the log of shear
zone length (Figure 8) and shear zone width (Figure 9). The

Figure 5. Shear zones on the millimeter scale. The images were rotated so that S1/2 (horizontal arrows)
is horizontal and then cropped to save space. Oblique arrows mark shear bands. (a) S1/2 is defined by
biotite-rich domains (Bt1) alternating with microlithons of elongate quartz (Qtz) and minor plagioclase
(Plag) that are locally warped around muscovite porphyroclasts (Ms). In both S1/2 and the shear bands,
Bt1 reacted syntectonically to form fine-grained aggregates of secondary Bt2, Ms, chlorite (Chl), and
ilmenite (Ilm). (b) Boudinaged Ms porphyroclast. Note fine-grained syntectonic aggregates of Bt2, Ms,
Chl, and Ilm that define the mylonitic foliation in the retrograde, greenschist-facies shear zones. See text
for explanation. Both pictures are taken with crossed polarizers of thin sections oriented parallel to the
XZ plane (sample CC08, location in Figure 4b).
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names and localities of the samples analyzed below are
shown in Figure 4b. These samples all come from shear
zones with well-defined boundaries, which is essential for
our analysis. The millimeter- to decimeter-scale samples are
from sections normal to the shear plane and parallel to the
shear direction. The meter- to kilometer-scale data deviate
somewhat from this ideal orientation. The consequences of
this bias are discussed below.
[24] The data clusters in Figure 8 can be fit to a power

law function:

LfRA ¼ CLL
DL ð6Þ

where CL and DL are power law parameters for each scale
range and L is the shear zone length. A similar, though
poorer fit with the same parameters was obtained for a plot
of LfRA versus shear zone width, W (Figure 9). The
geometric and mechanical significance of these parameters
is discussed below.
3.2.1. Uncertainties
[25] The analysis of two-dimensional images/maps has

some basic problems: The slicing effect of the erosional
surface on the apparent shape of the shear zones leads to a
systematic underestimate of the actual widths and areas of
the kilometer-scale shear zones. Moreover, these shear
zones dip between 35� and 85�, with stretching lineations

Figure 6. Shear zones on the centimeter to decimeter scales. Outcrop location marked in Figure 4b, data
set labeled ‘‘Rabasser Metapelites’’ in Figures 8, 9, and 12. These shear bands are located at the margin of
a larger shear zone. Its mylonitic foliation, S3, is oriented parallel to the shear plane and its shear bands
slant to the right (grey oblique arrows). Note the asymmetric boudinage of quartz ribbons (Qtz) and the
splayed terminations of shear bands in mica-rich layers.

Figure 7. Aerial photograph mosaic showing shear zones on the scale of tens of meters. Area (Cala
Cullaró) corresponds to the box in Figure 4b. The labels with letters denote the location of shear zones in
the corresponding foliation map in the inset (top right). The foliation map was used for the ACF
calculations. Note how shear zones terminate at large white leucocratic pegmatite bodies (Pg, examples B
and C). ‘‘MSZ’’ indicates the main shear zone at the bottom. The curved, dark, subvertical line ending to
the right of the label ‘‘MSZ’’ is a shadow cast by the kite used to take the photos.
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parallel to the shear direction plunging approximately 30� to
the NWon average [Carreras, 2001]. Hence the trace of the
shear zone boundaries on the subhorizontal outcrop surface
makes some of the largest, kilometer-scale shear zones
appear broader with respect to their length than for verti-
cally dipping shear zones with ideally horizontal stretching
lineations. However, the decrease in the length-to-width
ratio of 100-m- to kilometer-scale shear zones cannot be
explained by the sectioning effect alone. The aspect ratio
decreases by at least a factor of 5 from 100 m to kilometer
scales, whereas the sectioning effect underestimates the
aspect ratio by a factor of 1.5 (based on the mean orienta-
tions of the large-scale shear zones and their stretching
lineation from Carreras [2001]). This orientational bias can
be ruled out for the small-scale data because appropriate
outcrops were selected.

[26] Truncation effects associated with the resolution
limits of maps potentially lead to an underestimation of
the frequency of small structures [Bonnet et al., 2001],
resulting in a slight, but in this case, minor underestimation
of ARA. Shear zones on the kilometer scale are often longer
than the largest areas imaged. Indeed, the largest shear
zones at the scale of the Pyrenean mountain belt cannot
be analyzed due to our basic inability to see them in their
entirety at the surface. This selectivity or ‘‘censoring effect’’
[Bonnet et al., 2001] leads to a bias toward the analysis of
small-scale structures. Both the truncation and censoring
effects are unavoidable in any imaging method [Bonnet et
al., 2001], but their effects on the data below are probably
negligible.
[27] Earlier studies demonstrated that shear zone termi-

nations propagate out of the XZ plane of the strain ellipsoid

Figure 8. Localization fraction (LfRA) versus length of the shear zones in the Cap de Creus area.
Description of measurement technique is given in Appendix A. Box above the plot shows the range of
widths of existing (inherited) anisotropies as measured in thin section and outcrop. The bar for the
largest-scale data labeled ‘‘metamorphic zonation’’ is estimated from the maps of Carreras [2001] and
Druguet [2001], as depicted in Figure 4. Black squares with dashed black lines mark the size of rRAs, the
length of a side of the square with the area ARA. Grey circles with solid grey lines depict the size of rRAc,
the diameter of the circle with area ARA.
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and therefore do not reflect simple shear [Coward, 1976;
Ramsay, 1980; Simpson, 1983]. Thus a flattening compo-
nent of strain occurs that we cannot always see, especially
in 100-m- to kilometer-scale shear zones. However, the
importance of this pure shear component at the shear zone
tips is minor and decreases with increasing shear zone
length because the tip volumes become small relative to
the entire shear zone volume. Certainly, the slip line
analysis of mylonitic foliations and stretching lineations
from Fusseis et al. [2006] reveals that the bulk deformation
in the Northern Shear Belt was predominantly simple shear,
with only a minor component of coaxial strain.
[28] Fortunately, we can rule out sampling bias [e.g.,

Nicol et al., 1996] as an explanation for the scale-dependent
effects on rock structure, because the excellent outcrop
exposure at Cap de Creus precludes any observational gaps.
We actually see localization structures and existing aniso-
tropies from the grain scale to the scale of the entire
Northern Shear Belt.

3.2.2. Results
[29] Figures 8 and 9 reveal some interesting trends (see

also Table 1). First, there is a striking gap in the scale of
localization over lengths of several decimeter to meters, and
widths of centimeter to decimeter. This contrasts with
overlaps of both shear zone length and width at other scales.
Second, the widths of preexisting anisotropies (foliation
spacing, lithological layer thickness) and peaks in the LfRA
length plots coincide with the characteristic widths of ARA.
Third, the length-scaling exponent, DL, is nearly 1 for the
smallest shear zones on the millimeter to centimeter scales
and increases with shear zone length attaining a value of
1.71 for 100-m- to kilometer-long shear zones. The width-
scaling exponent, Dw, also varies with shear zone width but
less systematically. The correlation coefficients for the
power law fits are poor due to increasing importance of
measurement errors (the width determination error is larger
compared to shear zone width than to shear zone length)
and other reasons (above). In the following, we offer

Figure 9. Localization fraction (LfRA) versus width of the shear zones in the Cap de Creus area. Box
above the plot shows the range of widths of existing (inherited) anisotropies as measured in thin section
and outcrop. The bar for the largest-scale data labeled ‘‘metamorphic zonation’’ is estimated from maps
of Carreras [2001] and Druguet [2001], as depicted in Figure 4.
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possible explanations for these trends, especially the effects
of existing structure and deformation mechanisms that
operate on different scales.

4. Interpretation and Discussion

[30] Several factors affect the geometry of shear zones,
foremost the lithology and inherited structure (i.e., the
structure existing prior to the formation of the shear zones
[Carreras, 2001]), and the deformation mechanisms and
rheology of the rocks during shearing (Figures 4–7 and
Table 1). In the following, we focus on the effects of
lithology, deformation mechanisms, and rheology. The
influence of inherited structure has been investigated in
detail elsewhere [Carreras, 2001; Fusseis et al., 2006].

4.1. Role of Preexisting Anisotropies

[31] The ranges of individual LfRAwidth distributions and
also of some of the LfRA length distributions of the shear
zones correlate quite well with the ranges of widths (i.e., the
thickness) of preexisting anisotropies, as plotted on loga-
rithmic scales at the tops of Figures 8 and 9. Note that the
mechanical anisotropies identified in our field examples are
all parallel to S1/2. This close relationship between shear
zone width and the width of inherited structures is readily
observed in the rocks themselves: On the smallest (milli-
meter) scale, the shear bands emanate from micaceous
domains in S1/2 and from the edges of muscovite clasts
(Figure 5a), whereas on the centimeter scale (Figure 6) the
shear bands are developed in alternating layers of mica-
ceous schist (0.03 to 2.2 cm wide) and boudinaged quartz
aggregates. The meter- to decameter-long shear zones
(Figure 7) also splay from such layers, as well as from
the margins of decimeter- to 10-m-wide pegmatite bodies
[Druguet et al., 1997]. No inherited anisotropies are evident
on the scale of the kilometer-long shear zones. However, it
is notable that these large shear zones are restricted to the
part of the Northern Shear Belt with the highest metamor-
phic grades (cordierite-andalusite/sillimanite-muscovite
[Druguet, 2001]) and are oriented subparallel to the meta-
morphic isograds (Figure 4).
[32] These relationships suggest that the mechanical and

geometric properties of preexisting anisotropies controlled
localization on the same or similar scales. On the millimeter
scale, nucleation of shear bands along muscovite clasts and
micaceous layers may reflect stress concentrations that arise
from strain incompatibilities between the micas and the
adjacent quartz-rich layers undergoing predominantly dis-
location creep. Such stress concentrations can enhance

creep locally [Lloyd and Knipe, 1992; Mainprice et al.,
2004] or induce shear fracturing [Gottschalk et al., 1990;
Shea and Kronenberg, 1993; Holyoke and Tullis, 2006],
especially in the presence of a fluid at hydrostatic to near-
lithostatic pressure [Bauer et al., 2000a, 2000b]. Indeed,
Shea and Kronenberg [1993] found that shear fractures
nucleated in microlithons in experimentally deformed
micaschist. Shea and Kronenberg emphasized the impor-
tance of the initial spacing and concentration of micas and
nonmicaceous aggregates in nucleating such fractures. The
shear bands in Figure 5 are interpreted to have formed as
transgranular shear fractures during the early stages of strain
localization, then to have undergone a combination of
diffusion-accommodated grain boundary sliding in quartz
and plagioclase, and basal [001] glide in newly crystallized
micas [Fusseis, 2006, chapter 4].
[33] Lithological control of localization is also evident at

the margins of centimeter- and decimeter-scale shear zones,
where quartz-rich layers subparallel to S1/2 are smoothly
deflected across the shear zone (i.e., show moderate values
of Iloc), whereas micaceous layers are bent sharply (highly
localized strain, high Iloc values) and completely thinned out
in the mylonitic centers of the shear zones. This corroborates
many experimental and theoretical studies showing that
strain localization is governed by the mechanical properties
(e.g., viscosity contrast, number and thickness of layers
[Ramberg, 1955; Biot, 1964]) as well as the orientation of
existing anisotropies (e.g., schistosity, lithological layering)
with respect to the shearing plane [Cobbold et al., 1971;
Cosgrove, 1989].
[34] The general coincidence of kilometer-scale shear

zones with the orientation and location of regional meta-
morphic zones (Figures 4 and 8) may be fortuitous but may
also reflect the inherited effects of earlier metamorphism
and magmatism on rock rheology during shearing. Specif-
ically, prograde metamorphism culminating in the intrusion
of pegmatitic dikes prior to the formation of the greenschist-
facies shear zones [e.g., Druguet and Hutton, 1998; Alfonso
et al., 2003] may have lead to spatial variations in the rocks’
volatile content, especially in their water concentration.
Rock deformation experiments have documented the weak-
ening effect of volatiles, especially of dissociated water, on
silicate mineral aggregates undergoing intergranular and
intragranular creep (e.g., review by Carter and Tsenn
[1987]). Given the ubiquity of microstructures that are
diagnostic of dislocation creep in the largest shear zones
at Cap de Creus [Fusseis et al., 2006], it is tempting to
speculate that these shear zones nucleated and grew prefer-

Table 1. Table of Scaling Factors for Shear Zones on Different Scales in the Cap de Creus Area

Locality

LfRA
Maximum,

% DL CL Dw Cw rRAc rRAs Type of Anisotropy
Width Interval of

Anisotropy

Cala Prona (thin sections) 1.4 1.03 1.5 1.64 4.04 � 103 8.5 mm 1.5 cm spacing of cleavage domains [1; 5] mm
Ms clasts [0.5; 2] mm

Rabasser Metapelites 19.1 1.13 3.32 0.61 2.67 1.8 cm 3.2 cm spacing of cleavage domains [0.04; 2.4] cm
Rabasser Quartzites 16.1 1.45 2.12 1.52 179.4 4.0 cm 7.0 cm spacing of cleavage domains [0.03; 2.2] cm
Cala Cullaro 25.5 1.58 4.02 � 10�4 0.78 7.80 � 10�2 13.5 m 23.9 m pegmatite thickness [0.08; 8.4] m

sedimentary layering [0.10; �3] m
Northern Shear Belt 4.2 1.71 1.14 � 10�8 1.20 1.33 � 10�5 2369 m 4199 m metamorphic zonation? [�100; �7000] m
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entially in areas that had previously been enriched in fluids
during prograde devolitalization reactions and magmatism.
[35] Interestingly, the widths, rRAs and rRAc, of the local

homogenization scale, ARA, coincide with the maximum
thickness of the existing anisotropies with an accuracy
better than an order of magnitude (Table 1 and Figure 8).
The parameters rRAs and rRAc also coincide with peaks in
the LfRA length plot, but less well. Since ARA is defined
arbitrarily, this relation might be an artifact of our method
and requires further testing with other data. Nevertheless,
given the observation that the shear zones emanate from
existing heterogeneities, one would expect a correspon-
dence between a statistical homogenization scale and the
characteristic length scale of these mechanical anisotropies.
We observe that the homogenization scale ARA (and with it,
the scaling or growth law) increases once the largest shear
zones have a length close to the width or radius of ARA and
thereby transect the entire area of geometrical homogeniza-
tion. This behavior is consistent with the notion that the
effective mechanical layer thickness of the localized rock
volume affects the scaling behavior [Ackermann et al.,
2001]. Since the shear zones typically are oriented at angles
smaller than 90� (generally 30� to 45�) with respect to the
existing anisotropies, they can grow longer than the me-
chanically relevant maximum layer width (i.e., maximum
shear zone length >rRAs/rRAc) before they crosscut this layer
and the scale jump occurs. This may explain why the LfRA
length maxima are often associated with larger shear zone
lengths than the maximum widths of the related existing
anisotropies (Figure 8). We suggest that this observation
supports our definition of ARA.

[36] There are other reasons why peaks in the localization
fraction do not always correspond with the widths of
existing anisotropies and rRAs/rRAc. Some anisotropies are
not relevant for localization in the entire Northern Shear
Belt. For example, shear zones that are tens of meters long
(Cala Cullaro, Figure 8) are longer than the widths of the
largest pegmatitic bodies. These shear zones occur away
from the pegmatite dikes and do not emanate from their
margins. In the next section, we explore the idea that strain
and the active deformation mechanisms, in addition to
existing anisotropies, are also important determinates of
the scales of localization.

4.2. Effects of Strain and Kinematics

[37] DL varies with increasing shear zone length from
about 1 (quasi-linear) to 1.71 (nearly quadratic). The sys-
tematic variation of LfRA with length was termed ‘‘multi-
scaling’’ in the Introduction. The relationship of LfRA to
width also changes with scale, but Dw is more difficult to
interpret (Figures 8 and 9) for two main reasons: First,
measurement errors become more important and increase
the data scatter; second, the width variation of the two
smallest-scale data sets (Cala Prona and Rabasser metape-
lites) is less than half an order of magnitude, in contrast to
all other data sets. This decreases the quality of the power
law fit (compare correlation coefficients in Figure 9 [Bonnet
et al., 2001]). Shear zones at these scales grow faster in
length than in width.
[38] However, the relative values of DL and Dw suggest

that the aspect ratio of the shear zones first increases, then
decreases with length at the largest scales (Figure 10). For
millimeter- to decimeter-long shear zones, the aspect ratio

Figure 10. Plot of aspect ratio of shear zones versus shear zone length.
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increases from about 5 to 50. For 10-m- to kilometer-long
shear zones, the aspect ratio decreases from about 80 at
intermediate lengths to a minimum of 5 at the kilometer
scale. This is easily confirmed by comparing the geometries
of shear zones on different scales (e.g., compare trends in
Figure 10 with shear zone aspect ratios in Figures 4b and 5).
The greater increase of the DL value for shear zones at the
‘‘Rabasser Quartzites’’ locality may reflect the different
rheology of the quartz-rich rocks at this locality than of
the micaceous rocks hosting the shear zones in the other
localities.
[39] The evolution of the aspect ratio of shear zones with

increasing length as manifested by the DL values for
intermediate lengths belies strain-dependent changes in the
dominant deformation mechanisms from brittle deformation
(fracturing, cataclasis) to viscous, mylonitic shearing (dis-
location and diffusion creep). These changes are in turn
closely tied to a structural transition from isolated to
networked shear zones, as described by Fusseis et al.
[2006].
[40] At low shear strains on the grain scale, localization

involves fracturing antecedent to viscous creep, as described
above. This is reflected by the nearly linear scaling rela-
tionship for the shear bands at Cala Prona in Figure 8,
which are thin, planar features that originated as shear
fractures (Figure 5a). At centimeter to decimeter lengths
(Rabasser data, Figure 8), the increasing nonlinear DL value
is associated with the growing importance of viscous creep
mechanisms in the center of the shear zones (dislocation
creep in quartz, glide parallel to the basal [001] crystallo-
graphic plane in micas, diffusion-assisted grain boundary
sliding in fine-grained qtz-fsp-mica aggregates [Fusseis,
2006]). Quartz-rich layers are asymmetrically boudinaged
and rotated between mica-rich layers (Figure 6), reflecting
multilayer extension [Gosh and Sengupta, 1999] during
noncoaxial, mylonitic flow [Jordan, 1991]. Block rotation
is associated with drag folding [Goscombe et al., 2004]
adjacent to the shear bands. This is consistent with en-
hanced viscous creep at that scale.
[41] For shear zones ranging in length from meters to tens

of meters (Figure 7), DL becomes more nonlinear (Cala
Cullaró data, Figure 8) than for centimeter- to decimeter-
long shear zones. Up to this crucial range of lengths,
fracturing is inferred to have been active during mylonitic
shearing; the fractures formed at the tips of longitudinally
propagating mylonitic shear zones that are just locally
interconnected [Fusseis et al., 2006]. Although some of
these shear zones evidently nucleated on the same length
scale as existing anisotropies (described above), many of
them are clearly longer than these anisotropies (Figure 8) as
they have grown longitudinally in a direction subparallel to
the shearing plane. This growth explains the gap in local-
ization data at the 10-m scale in Figure 8. Shear zone
lengthening is a more important growth mechanism than
widening on the millimeter to 10-m scales. As shown
below, widening becomes more important once a three-
dimensional (3-D) network of shear zones is established.
Increasing DL values from decimeter to meter scales are
interpreted to imply that as the shear zones widen, viscous
deformation mechanisms gain importance with respect to
brittle deformation mechanisms. Our field measurements
indicate that deformation within shear zones changes from

brittle to mylonitic where displacement exceeds a critical
value of about 1–2 m [Fusseis et al., 2006]. As shown in
section 4.3, the mylonitic centers of these shear zones
experienced softening, thus facilitating shear zone length-
ening. Softening along the mylonitic centers probably
results in increased displacement/strain rates leading to
greater stress concentrations at the shear zone tips that in
turn drive tip propagation [Cowie and Shipton, 1998].
[42] The dramatic increase in DL to nearly 2 for shear

zones with lengths from hundreds to thousands of meters
(Figure 8) is clearly related to the establishment of a network
of anastomosing mylonitic shear zones (Figure 4b). At this
scale, fracturing is subordinate to mylonitic deformation,
such that the linkage of smaller-scale shear zones can be
interpreted to coincide with a transition from brittle to
viscous deformation at the crustal scale [Fusseis et al.,
2006]. These anastomosing shear zones broaden with in-
creasing strain, eventually incorporating meter- to 10-m-
sized blocks or lozenges of less deformed rock [Fusseis et
al., 2006]. This lateral homogenization process is best
displayed in a plot of aspect ratio versus shear zone length
(Figure 10). The lozenges are inferred to have rotated during
deformation, a process which is analogous to the block
rotation described above, and which previous studies have
shown can accommodate greater strains without lengthening
the host faults [Gross et al., 1997]. Therefore both broaden-
ing of the linked shear zones and block rotation of lozenges
between the shear zones may be responsible for the reduced
aspect ratios of the 100-m- to kilometer-long shear zones.
[43] The change of the localization exponent, DL, with

increasing shear zone length primarily reflects a progressive
increase in areal growth per length increment, a process
which we termed network widening in the introduction. The
evolution of the aspect ratios of the shear zones with length
shows that lateral growth increasingly contributes to the
increased areal growth (indicated by high DL values) at the
largest scale. Network widening can also be regarded as
delocalization (or increasing homogenization) of strain on
any given scale. During purely brittle deformation in the
upper crust, deformation is focused into a few, long faults
that form by fault linkage within a regionally broader
network of fractures [Cowie, 1998; Walsh et al., 2001].
We referred to this evolution as network narrowing above.
In contrast, our examples from the Cap de Creus show that
strain localization at the transition from brittle to viscous
deformation results in network widening as viscous creep
becomes dominant. Localization by dynamic recrystalliza-
tion or diffusion-accommodated grain boundary sliding
[Post, 1977; Zeuch, 1982] is an efficient mechanism to
accommodate long-term loading and to weaken the deform-
ing rock. Brittle failure occurs primarily at the tips of the
propagating shear zones, where we argue that the loading
rate sporadically exceeded the relaxation rate associated
with viscous creep in the center of the shear zone [e.g.,
Fusseis et al., 2006]. Fracturing at shear zone tips predomi-
nated on the decimeter to meter scales but was subordinate
on larger scales, either because the overall strain rate was
lower or because fracturing was viscously damped.
[44] The linkage of shear zones coincides with a strain-

dependent switch from cataclasis to viscous mylonitic flow
on the scale of the entire Northern Shear Belt. This is
because weakening in the mylonitic centers of the shear
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zones drives stress buildup and propagation at the brittle
shear zone tips. In the light of this, the change in DL values
with shear zone length can be regarded as an empirical
multiscaling growth law for shear zones at the brittle-
viscous transition.

4.3. Do Shear Zones Soften or Harden During Network
Widening?

[45] Cataclastic and mylonitic rocks have different rheol-
ogies [e.g., Handy, 1989], but how does rheology change
during network widening? Insight into this question comes
from the variation of the strain localization intensity factor,
Iloc, along and across the center of both individual and
networked shear zones. Recall that Iloc is a measure of the
heterogeneity (i.e., the shape) of a shear strain profile across
a shear zone (Figure 3). Previous workers suggested that the
temporal evolution of such profiles yields insight on the
changing rheology of the deformed rocks [Hull, 1988;
Lamouroux et al., 1994; Means, 1995]. Inspired by Means
[1984], Hull [1988] distinguished three end-member types
of shear zones:
[46] 1. Type I zones harden with time. They broaden

during growth and exhibit flat-topped, weakly localized
strain profiles such as that shown in Figure 3a [see Hull,
1988, Figure 4]. Iloc is small and, in an actively hardening
and broadening type I shear zone, continuously decreases
after an initial stage of growth related to prelocalization
elastic loading and shear zone nucleation.
[47] 2. Type II shear zones either soften in their centers or

harden from their boundaries to their interior. They are
expected to narrow with time. The resulting finite shear
strain profile becomes increasingly heterogeneous over time
with a narrowing, growing central peak. Iloc has rather high
values and increases as long as the center of the shear zone
weakens with respect to its margins.
[48] 3. Type III shear zones remain at steady state. They

maintain a constant width and have a homogeneous strain
distribution. This behavior is exemplified by systems un-
dergoing homogeneous simple shear, e.g., some kink bands
[Dewey, 1965]. Iloc has a constantly low value during
kinking. Obviously, these end-member types of shear zones
only bracket the range of possible shear zones evolutions in
nature; they are conceptual vehicles for interpreting real
strain profiles.
[49] Provided that spatial variations in strain are a valid

proxy for time [Mitra, 1984; Means, 1995; Fusseis et al.,
2006], we can use variations of Iloc across and along shear
zones to reconstruct temporal and spatial variations in
relative strength during shearing. To this end, we plotted
several shear strain parameters versus the distance from the
tips to the centers of a single mylonitic shear zone with
appropriate markers from the Cala Prona (Figure 11, based
on data from Fusseis et al. [2006]) on the premise that the
displacement gradient over this distance (Figure 11a)
reflects a time sequence of the shear zone evolution. That
is, progressively older fabrics are preserved from the tip to
the center of the shear zone. The assumption that spatial
variations in structure and shear strain reflect temporal
variations in the Cap de Creus shear zones is justified by
structural and metamorphic evidence that shearing on the
crustal scale occurred during one continuous, kinematically
simple event (simple shearing) under retrograde green-

Figure 11. Plots of various measures of localization versus
distance from the tip to the center of a single, meter-scale
shear zone in the Cap de Creus area (Cala Prona, see
Figure 4). (a) Localization intensity, Iloc, and displacement.
(b) Maximum shear strain. (c) Mean shear strain. Distance
on the horizontal axis is used as a proxy for time during shear
zone evolution, increasing to the right (see text). Black lines
show best fit functions to the data (discussed in text).
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schist-facies conditions [Druguet, 2001; Fusseis et al.,
2006]. We note that the calculated values of the strain
localization intensity factor, Iloc, in Figures 11 and 12, are
subject to uncertainties in the determination of maximum
shear strain (see Fusseis et al. [2006, appendix] for a
detailed discussion). Although such estimates are fairly
reliable for shear zones on length scales up to 10 m, no
markers for determining shear strain are available for the
Northern Shear Belt as a whole.
[50] Displacement along the single shear zone at Cala

Prona (location in Figure 4b, same as for Figure 5) increases
linearly from the tip to the center of the shear zone,
indicating that deformation was probably continuous on
the timescale of shear zone activity [Fusseis et al., 2006].
Iloc increases with this distance as well and is best fit by a
quadratic polynomial function (black line, Figure 11a). We
interpret the increase in Iloc values from tip to center to
reflect strain weakening of the shear zone center relative to
the tips. As pointed out before [Fusseis et al., 2006],
weakening can also be inferred from the evolution of max-
imum shear strain (gmax) and mean shear strain (gmean)
depicted in Figures 11b and 11c. The gmax and gmean data
are best fit by power law and exponential functions,
respectively (black lines in Figures 11b and 11c). Because
both plots refer to identical distance intervals (and hence
time steps) in the same shear zone, the best fit curves
indicate that the strain rate in the shear zone center accel-
erated with respect to the strain rate near the shear zone tips.
[51] To investigate how weakening scales with shear zone

size, we plotted Iloc versus the localization fraction, LfRA
(Figure 12a), shear zone length (Figure 12b), and shear zone
width (Figure 12c) for all millimeter- to decimeter-long shear
zones presented here. The Iloc values are calculated from
shear profiles where maximum displacement occurred. The
smallest-scale shear zones (Cala Prona locality, Figures 4b
and 5) have moderate to high intensity factors and low
localization fractions (Figure 12a), and their strain localiza-
tion intensity factors are effectively invariant with length and
width (Figures 12b and 12c). In other words, strain locali-
zation does not intensify significantly during shear band
growth. Their width varies little with their length (Figure 5)
so that the strain distribution within these shear bands
appears rather weakly localized when regarded at the scale
of a thin section. For the centimeter-scale shear zones
(Rabasser Metapelites and Quartzites), Iloc correlates posi-
tively with both length and width (Figures 12b and 12c),
suggesting that strain localization intensifies during growth
of the shear bands. We interpret this to indicate strain
weakening within the shear bands, probably due to increased
activity of dynamic recrystallization (structural softening of
Poirier [1980]). Unfortunately, Iloc could not be determined
with sufficient accuracy for all larger scales.

4.4. How Does Network Widening Work for
Strain-Weakening Shear Zones?

[52] It seems counterintuitive that shear zones like those
of the Northern Shear Belt widened while the fault rocks in
their centers weakened with strain. Indeed, this develop-
ment contradicts the notion of Means [1984, 1995] and Hull
[1988] that shear zones widen only in response to strain
hardening. Yet the following arguments support the idea
that a combination of rheological and geometric conditions

Figure 12. Plots of strain localization intensity factor, Iloc,
versus (a) localization fraction, LfRA, (b) shear zone lengths,
and (c) widths for the millimeter- to decimeter-long shear
zones considered in this study (symbols for shear zones
from different localities given in box).
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lead to network widening during overall weakening on the
crustal scale:
[53] Prior to shear zone linkage and the formation of a

shear zone network, the deformation in the vicinity of an
individual shear zone may be reasonably regarded as a
diffusing sheet vortex between two uniform streams in free
shear (Figure 13) [Batchelor, 2000]. The transition from
brittle failure to thermally activated creep documented
above and in previous studies [Fusseis et al., 2006] justifies
regarding the continental crust as an elastoviscoplastic
material; once this material yields, elastoplastic behavior
at low shear strains gives way to viscoplastic rheology. Thus
an initial shear fracture eventually develops a ductile,
transitional layer between the two opposing streams
(bounded by the diverging shear zone boundaries) to be
able to accommodate the imposed simple shear (Figure 13).
In other words, a narrow, almost discrete fault cannot be
maintained because of the viscous drag force that develops
between the undeformed rocks on either side of the dis-
placement. The transitional layer in Figure 13 is analogous
to a mylonitic shear zone with drag folds; the boundaries of
this zone diverge (i.e., the shear zone widens) if the viscous
material weakens, as might be expected for rocks undergo-
ing power law creep [Evans and Kohlstedt, 1995]. Howev-
er, if one assumes a constant loading rate, the shear zone
will eventually attain a stable width as strain rate decreases
due to widening, in turn leading to an increase in effective
viscosity. We therefore believe that this mechanism of shear

zone widening is restricted to isolated shear zones at the
millimeter to meter scales, possibly up to the onset of shear
zone networking.
[54] Once a network of mylonitic shear zones develops at

scales of 100 m to kilometers, the widening of this network
may be attributed to changes in the geometrical boundary
conditions of shearing. The network of shear zones repre-
sents an interconnected weak layer or matrix that encloses
lozenges of less deformed host rock [Handy, 1994]. Field
evidence clearly shows that these lozenges rotated and were
mylonitically overprinted as the networked shear zones
grew wider [Fusseis et al., 2006]; the lozenges accommo-
dated strains without the adjacent shear zones necessarily
growing longer [Gross et al., 1997]. Consideration of the
partitioning of viscous strain energy in such a network of
deformed and less deformed rock suggest that networking
of shear zones can weaken the continental crust by up to
10–20% [Handy, 1994].

5. Summary and Conclusions

[55] Strain localization at the brittle-to-viscous transition
in continental crust is strongly strain- and scale-dependent
during the entire development of the shear zone network.
This is illustrated in Figure 14 by a conceptual model for the
evolution of the shear zones at the Cap de Creus. The model
is based on a combination of the multiscaling analysis
above with the time sequence of shear zone development
derived previously [Carreras, 2001; Fusseis et al., 2006]
from the strain gradients across the Northern Shear Belt.
[56] Localization initiated as shear fractures on one or

more scales (stages a and b in Figure 14) that correspond to
the three main, inherited mechanical anisotropies (grey
areas in Figure 14): existing schistosity (millimeter to
centimeter scales), lithological layering (decimeter to meter
scales), and pegmatite bodies (meter to 10-m scales). Two
thresholds were important for the continued evolution of
these shear zones in time and space:
[57] 1. The first is the attainment of a critical displacement

along individual fractures facilitating viscous creep on these
fractures. The onset of creep at this critical displacement
weakened the shear zone centers, thereby increasing strain rate
and driving fracturing and shear zone lengthening at the tips.
[58] 2. The second is the attainment of a critical shear zone

length, such that the concentrated stress fields at the tips of
the encroaching shear zones interacted, thereby causing
these shear zones to interconnect (stage b in Figure 14).
Linkage of mylonitic shear zones was associated with
upward jumps in the scale of the shear zone system and is
reflected by the increase in DL, the power law exponent of
the LfRA length relation (stages b and c in Figure 14). Once
the shear zone network reached lengths of hundreds to
thousands of meters, the existing anisotropies that influ-
enced shear zone scaling at all smaller scales (schistosity,
layering, and pegmatite bodies) no longer affected shear
zone scaling (stage c in Figure 14). DL reached its greatest
value (almost 2) and the fully established network grew and
thereby homogenized laterally. This process of ‘‘network
widening’’ is contrary to conventional notions of strain
localization, in which the deformation is considered to
localize at smaller widths than the initial width(s) of initial
localization. Network widening leads to the establishment of

Figure 13. Shear zone widening due to a switch from
elastoplastic to viscoplastic, simple shear based on the
concept of a diffusing sheet vortex [after Batchelor, 2000].
The diagram shows two velocity profiles across the shear
zone (Z fabric direction) on the vertical axis and displace-
ment in the transport direction (X fabric direction) on the
horizontal axis. The shear zone is assumed to accommodate
simple shear. Incremental velocity profiles are for a planar
brittle fracture undergoing cataclasis at zero cohesion (low
strain, left) and for a weaker, mylonitic shear zone
deforming at constant strain rate and temperature (high
strain, right). The dashed lines indicate the borders of the
broadening shear zone. Initially, the brittle fault zone is a
sharp discontinuity, but with the onset of viscous mylonitic
flow shear forces are transmitted across the fault. A
transitional layer must develop because the velocity profiles
must remain continuous to ensure compatibility, thereby
causing the fault zone to widen with strain.
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a weak, mylonitic, large-scale fault system at the brittle-
viscous transition, which is consistent with recent fully
coupled numerical models [Regenauer-Lieb et al., 2006].
In the case at hand, network widening is associated with the
strain-dependent transition from brittle to viscous deforma-
tion (stage c in Figure 14). The increase in DL values from 1
to 2 over this broad range of length scales can therefore be
regarded as an empirical, scale-variant growth law for shear
zones at the continental brittle-viscous transition.
[59] Varying power law relationships have also been

reported for size-frequency and displacement-length distri-
butions on brittle faults due to strain-dependent changes of

fault structure [Wojtal, 1996; Nicol et al., 1996; Gross et al.,
1997], deformation mechanisms [Wojtal and Mitra, 1986,
1988; Crider and Peacock, 2004, and references therein],
and effective mechanical thickness of the host rocks during
fault growth [Ackermann et al., 2001]. An outstanding
challenge will therefore be to compare the scaling character-
istics of brittle faults and of the shear zones in our study
with those of deep crustal shear zones formed well below
the continental brittle-viscous transition.

Appendix A

A1. Determination of ARA, the Elementary
Reference Area

[60] Consider a foliation map with foliation traces at
angles 8loc and 8i to a reference line, respectively, inside
and outside a shear zone (Figure 2). This foliation map is
covered with a grid comprising square cells, xai (Figures A1a
and A1b). We call this grid (and the map covered by it) a
‘‘region of interest’’ or ROIa, where the subscript ‘‘a’’
denotes the width of a grid cell, xai, with a = 2n pixel and
n 2 {1, 2, 3,. . .} at the point i. Within any one of the square
cells of the ROIa, the mean orientation of all foliation traces,
8mi, is calculated with ACFs (see below). A cell is consid-
ered to be outside of the shear zone if 8mi is an element of 8i
(unlocalized orientations) and within the shear zone if 8mi is
an element of 8loc (localized orientations). The relative
frequency of elements with mean orientations that are
localized, Freq(8loc), is calculated for a given ROIa and
plotted versus a, the width of the grid cells (Figure A1c). The
value of a at which Freq(8loc) = 5% is arbitrarily designated
as the length, rRAs, of one side of the square representative
elementary area, ARA, such that

ARA ¼ r2RAs: ðA1Þ

The value of rRAs is easily determined by interpolating
linearly between points bracketing the 5% boundary on a
plot of Freq(8loc) versus a (Figure A1c).
[61] Note that this method had to be simplified for the

kilometer-scale shear zones due to the lack of resolvable
fabric within the shear zones on the available maps and a
8i = [10�; 110�]. The shear zone areas were vectorized and
filled with an evenly distributed, linear pattern representing
the trace of the S3 mylonitic foliation parallel to the main
trend of the shear zones on the map. The remaining parts
of the map outside of the shear zones were filled with an
evenly distributed linear pattern trending parallel to the
average orientation of S1/2 at high angles to the shear
zones containing S3.

A2. Determining 8mi With Autocorrelation Functions

[62] This section describes how to determine the mean
foliation orientation, 8mi, within a grid cell xai of a region of
interest. The autocorrelation function (ACF) is a statistical
function that describes the spatial variability of regionalized
variables. The ACF may be written

f x; yð Þ 	 f x; yð Þ ¼
Z1

�1

Z1

�1

f x0; y0ð Þ � f xþ x0; yþ y0ð Þdx0dy0;

ðA2Þ

Figure 14. Conceptual model for the evolution of shear
zone scale with bulk strain. The horizontal axis denotes
increasing time and bulk strain. The vertical axis shows the
widths of existing anisotropies in the Cap de Creus
outcrops. The vertical extent of the grey rectangles
corresponds to the width of the anisotropy (bold labels),
whereas their horizontal extent indicates when these
anisotropies affected shear zone scaling during network
evolution (sketches at bottom simplified from Figure 1).
The position of the schematic LfRA length plots (stages a, b,
and c) in the diagram shows how the shear zones evolved
with the development of the shear zone network. LfRA
peaks in dashed lines represent length scales of the network
that neither are influenced by the regarded anisotropy nor
affect the scaling behavior of the system at that scale
anymore. Stage a is initial fracture nucleation and propaga-
tion. Stage b is attainment of critical displacement and
lengths of fractures and shear zones for linkage. Stage c is
lengthening and broadening of the shear zone network on
the kilometer scale. The dominant deformation mechanisms
for all networking stages are given at the top of the diagram.
The scale of localization increases as the shear zones
propagate and link up to form interconnected weak layers
parallel to the shearing plane (see text).
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where f(x,y) represents the two-dimensional brightness
function defining the sample image, the operator 	 stands
for a correlation or convolution, and x0 as well as y0 are the
dummy variables of integration [Panozzo Heilbronner,
1992]. The value of the ACF at a given point (x0, y0), r,

yields the correlation of all image points (x,y) with all
neighborhood points (x + x0, y + y0) [Panozzo Heilbronner,
1992]. The origin of the ACF coordinate system is located
at the center of the ACF figure (Figure A2). The ACF figure
allows one to see how well an image correlates with itself

Figure A1. Determination of ARA. (a) ROI256 calculated for schematic shear zone in Figure 2.
Tessellated ACFs represent c256i. (b) ROI512 for same sample image as in Figure A1a showing grid cells,
x512i, for which ACF centers, c512i, were calculated. The xai overlap 1/2 of their size in both horizontal
and vertical directions, ensuring that the ACF center cai is measured four times; this smoothes local
variations of the ACF. (c) For each ROIa, the proportion Freq (8loc) of cai with 8mi 2 8loc is determined
and plotted versus grid cell width, a. ARA is chosen to be the square of width rRAs for which Freq (8loc) =
5%. Linear interpolation between the points closest to the 5% boundary determines rRAs.

Figure A2. Visualization of the ACF [after Panozzo Heilbronner, 1992]. (a and d) Two sample images,
(b and e) for which ACFs were calculated. (c and f) A 3-D surface plot of the ACFs. Zero displacement is
always located at the center of the ACF. Note that the gradient of the ACF brightness depends on the
shape of the analyzed object. For the circle, this gradient is constant in all directions due to rotational
symmetry. The ACF corresponding to the rectangle (Figure A2e) has higher gradients in the y0 direction
because the point of zero correlation is reached more readily than in the x0 direction.
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when it is displaced (with respect to itself) in all possible
directions [Panozzo Heilbronner, 1992]. Thus it reveals low
gradients in r parallel to elongate feature directions or to
features with low spatial frequencies, and high gradients in r
parallel to short feature directions or to features with high
spatial frequencies [Panozzo Heilbronner, 1992, Figure 4]
(Figure A2). This property is what allows ACF figures to be
used to determine directions of preferred orientation, for
example, the shape-preferred orientation of platy or elongate
minerals in rocks (Figure A2) [Panozzo Heilbronner, 1992;
Heilbronner, 2002].
[63] In this paper, we apply ACFs to determine the mean

orientation of foliation traces from 2-D images like maps
and thin sections. An ACF is calculated for each constituent
grid cell, xai, of a foliation map, ROIa, to obtain the mean
orientation of the foliation within that cell (Figures A1a and
A1b). A cell typically contains several foliation traces, one
or more of which may have different orientations. All of
these traces determine the geometry of the ACF figure to an
extent dependent on their shape, orientation and frequency.
Thus the ACF averages the orientations of all objects (e.g.,
mica grains making up foliation) within a given cell.
[64] We used center-weighted ACFs to smooth out local

aberrations in the orientation of foliation traces (Figure A1b).
For any given ROIa, center-weighted ACFs are calculated for
each xai. The xai overlap 1/2 of their size in both horizontal
and vertical directions, such that the ACF center, cai, is
measured four times. The cai are tessellated (Figures A1a
and A1b). The orientation of the long axis of the best fit
ellipsoid of the basal contour of an ACF peak in a cai yields
the mean orientation 8mi of the related xai [see also Panozzo
Heilbronner, 1992, Figure 5c].

A3. Thresholding

[65] Thresholding is the process of separating (literally
cutting off) the central ACF peak from the background
noise. The shape and orientation of the central ACF peak
depend on the grey value (, i.e., the correlation level, r)
chosen to define its basal contour. This peak rises above a
plane that consists of valleys and ridges (Figures A3b and
A3c). For image displacements smaller than the average
marker line distance, small correlations causing the
valleys occur due to small overlaps of oblique or curved
markers. This is unavoidable background correlation
[Panozzo Heilbronner, 1992]. If the displacement is close
to the average marker line distance, the overlaps increase on
account of the periodicity of the foliation pattern causing
ridges of higher correlation. Since only the basal contour of
the central peak is of interest, the peak must be cut off not
only above the background correlation level, but also such
that no contacts to the adjacent ridges occur. This is
necessary because the cutoff is done by binary thresholding
of the grey values in the image: All values equal to or above
the threshold are converted to black, whereas those below
the threshold become white. If the threshold is too low, the
central peak as well the major ridges are connected. As a
consequence, this cai contains a large, quasi-rectangular
particle that does not yield the orientation of the central
peak when determined automatically by a bitmap analysis
software. Since the grey value distribution of the cai is
positively skewed (Figure A3d), we calculate the threshold
simply by adding the mean grey value and its standard

deviation. This yielded good results (Figure A3e). Some-
times adjacent cai link after thresholding, resulting in their
appearing to be a single particle. This bias is avoided by
superposing a single-pixel, white grid of cai mesh size.
[66] After thresholding, all remnant ridge-related particles

as well as single-pixel noise are removed by a routine
simply selecting the central particles and pasting them in
a blank image (Figure A3f). Otherwise, the automatic image
analysis routine measuring the orientations of the central
particles would regard the noise as well and bias the results.
The ACF data in the present paper have been calculated,
processed, and evaluated using the public domain software
Scion Image (http://www.scioncorp.com/) and macros by
Heilbronner [2002]. For a detailed manual and the macros
for denoising, please contact C. Schrank.

A4. Testing the Robustness of the Method

[67] Because the ACF figure depends on the geometry,
frequency, distribution, and orientation of the marker lines
in the sample image, bias must be expected due to spatial
variations of these features (Figure A4). The geometrical
bias is caused by variations of marker line thickness; thick
marker lines reduce the average marker line distance. This
results in a higher background correlation level because the
overlaps due to the periodic foliation pattern occur for
smaller displacements (Figure A4c). The height of the
central peak compared to the basal plane decreases. Thus
thresholding and denoising are rendered more difficult
because the skewness of the grey value distribution is
diminished. The probability of recording connected par-
ticles is increased. The proportion of xai with 8mi that are
elements of 8i increases as well (Figure A4d). This effect
becomes more relevant for ACF sizes close to the average
marker line distance. Thus huge line thickness should be
avoided. On the basis of empirical considerations, we used a
line thickness of one point, the horizontal image width
being 1024 pixel.
[68] The frequency and distribution of marker lines de-

pend on lithology and outcrop conditions. Gaps in marker
lines due to lack of outcrop are common on maps. For
foliation maps with major gaps in marker lines, the back-
ground correlation level of the ACF decreases (Figure A4a).
Most segments of the marker lines outside the shear zone
have a nonlocalized orientation, 8i. Therefore the gaps in
marker lines locally reduce the periodic overlaps for dis-
placements approximately equal to the average distance
separating marker lines. The frequency of xai with 8mi being
an element of 8i is artificially reduced at these places. This
effect increases for decreasing ACF size because the gaps
become large compared to ACF size. The graph in the Freq
(8loc) versus ACF size plot is shifted upward (Figure A4d).
However, the differences in the graphs decrease significantly
at the scale of rRAs (Figure A4d).
[69] In conclusion, the divergence in the graphs reflects

variations in the average marker line distance and gaps in
the marker line distribution. If the size of these spatial
features is small compared to the ACF size, this bias is
averaged out. This is the case at the scale of rRAs because
the average marker line distance is determined by the size of
the smallest anisotropies regarded which are intrinsically
small compared to ARA due to the geometric homogeneity
condition. Nevertheless, when reasonably applicable, we
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filled in gaps between the marker lines by interpolating their
orientation and average spacing.

Notation

ACF autocorrelation function.
Aloc shear zone area in XZ plane of the strain

ellipsoid.
ARA geometrically representative elementary refer-

ence area.
a length of sides of a square grid cell (search

window) in a ROIa.
CL preexponential constant of LfRA length

distribution.
Cw preexponential constant of LfRA width

distribution.

cai ACF center calculated by a center-weighted
ACF for a given ROIa at the grid cell xai.

d displacement at a given shear zone section.
DL power law exponent of LfRA length

distribution.
Dw power law exponent of LfRA width distribution.

Freq(8loc) frequency distribution of cells with orientation
8loc for a given ROIa.

Iloc strain localization intensity.
L shear zone length in XZ section of the strain

ellipsoid.
LfRA localization fraction, normalized shear zone

area.
rRAs length of the sides of the square of area ARA.
rRAc diameter of the circle of area ARA.
REV representative elementary volume.

Figure A3. Thresholding and denoising of ACF centers, cai. (a) Foliation map of the Cala Cullaró area.
Box with arrow marks a sample xai. Indicated x direction is equivalent to east in nature. (b) cai
corresponding to xai indicated in Figure A3a in plane view. (c) A 3-D plot of the same cai. (d) Grey value
distribution for depicted cai. (e) The parameter cai after application of the proposed threshold. Note the
central particle being separated from the remnant ridge particles. (f) The parameter cai after thresholding
and denoising. Only the basal contour of the ACF peak remains.
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ROIa region of interest, grid covering a foliation map
with square grid cells of width a.

W transversal shear zone width at a given section.
xai single square grid cell of a given ROIa at the

place i.
g shear strain.

gmax maximum shear strain in a transversal shear
strain profile of a shear zone.

gmean mean shear strain of a transversal shear strain
profile across a shear zone.

8i initial, undeformed orientation interval of
marker lines.

8loc deformed, localized orientation interval of
marker lines.

8mi mean orientation of a xai calculated by ACF.
8p orientation of the tangent in a point P on a

marker line of a foliation map.
r level of correlation yielded by ACF for a given

displacement (x + x0, y + y0).
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