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Abstract—Mylonitic rocks and rock-analoguc materials reveal two basic types of structure: (1) a load-bearing
framework (LBF) of strong phase contains isolated pockets of weak phase; (2) interconnected Jayers of weak
phasc (IWL) separate boudins and clasts of strong phase. Aggregates with the LBF microstructure are
characterized by nearly uniform strain rate. Stress is concentrated in the load-bearing framework. Tn apgregates
with an FWL micyostructure, strain rate and sometimes also stress are higher in the interconnected weak phasce
than in the boudins and clasts of strong phase, The degree of stress and strain partitioning depends strongly on the
viscous strength contrast and on the relative amounts of the constituent mineral phases, Based on these
abservations, the theology of two-phase rock is modelled with separate functions for LBF and TWL microstruc-
turcs, A new flow law is derived for rock with IWL structure in which two phases undergo dislocation ereep. The
flow law cxpresses composite creep strength in terms of temperature, bulk strain rate and the volume proportions
and creep parameters of the minerals in the rock. Strain rate and stress are averaped in the constituent phases and
slip along phase boundaries maintains strain compatibility within the aggregate, Composite strengths predicted
with the TWL flow Jaw fall well within the uniform stress and uniform strain rate bounds and are generally
consistent with the viscous strengths of experimentally deformed bimineralic aggregates. A hypothesis of viscous
strain energy minimization is used to determine the relative stability of the LBF and I'WL microstructures,
During steady-state creep, the IWL microstructure is predicted te be stable over a broad range of two-phasc
compositions and mineral strength contrasts, whereas the LBF microstructure is stable only in rocks with low
volume proportions of weak phase and low to moderate mineral strength contrasts. The [WL flow law indicates
that rheological stratification in the lithosphere depends strongly on rock compositton, cspecially in rocks with

low volume proportions of a weak phase and high mincral strength contrasts.

INTRODUCTION

Most rocks in the intermediate to deep crust and in the
mantle contain one or more mineral or melt phases with
non-linear temperature, strain rate and grain size de-
pendent rheologies. The problem of deriving a flow law
for such viscous composite materials has vexed physi-
cists, engineers and earth scientists for many years and
approaches to an analytical solution have advanced
along both experimental and theoretical lines (review in
Handy 1990},

The investigation of composite materials reveals that
their rheology is intimately related to their structure.
Two basic kinds of microstructurc are distinguished in
naturally and experimentally deformed two-phase
aggregates (Fig. 1, simplified from Handy 1990): (1) the
stronger phase forms a load-bearing framework (LBF
structure) that contains pockets of the weaker phase;
(2) the weaker phase forms an interconnected weak
matrix or layers (IWL structure) separating boudins or
clasts of the stronger phase. In this paper, a ‘phase’ is any
material with distinctive rheological properties. The
adjectives ‘weak’ and ‘strong’ describe the relative
strengths of two phases outside their host composite
material at a reference strain rate and temperature. The
ratio of these strengths is the viscous strength contrast,
7., Or competence contrast of the two materials (sce
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Fig. 1. Microstructures in deformed two-phase viscous materials as a
function of the velume proportion of the weaker phase (¢, , horizontal
axis) and viscous strength contrast between the strong and weak
phases (r,, vertical axis). LBEF and WL arc abbreviations for *load-
bearing framework” and ‘interconnected weak layer” microstructures.

Ramsay & Huber 1987, p. 7) and is an absolute measure
of their relative deformability.

For a given bulk strain, the aspect ratio of the isolated
phases within both LBF and IWL structures is inversely
and non-lincarly related to the viscous strength contrast
between the constituent phases at the bulk strain rate
(Gay 1968, Bilby et af. 1975, Freeman 1987} (Fig. 1).
Stress and strain partitioning amongst the phases
depends on the contrast in rheological properties of the
constituent phases (Cobbold 1983, Treagus & Sokoutis
1992, Weijermars 1992) and on the volume proportions
of the phases in the composite material. At strength
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ratios near unity, both phases deform almost homogene-
ously and form lenticular, interconnected layers that are
oriented subparallel to the plane of shear, regardless of
their relative abundance in the rock (fig. 1.8 in Ramsay
& Huber 1987).

In view of this close relationship between structure
and rheology, it seems surprising that rock composition
and structure are not incorporated into current rheologi-
cal models of Earth's lithosphere. This reflects the
mathematical complexity of modelling heterogeneous
flow in composite materials like rock, whose constituent
phases usually have non-linear, viscoplastic rheologies
(review in Carter & Tsenn 1987). A common, relatively
simple approach to determining the bulk rheology of
such material involves the limiting assumptions that
either strain rate or stress is homogeneous within the
aggregate. These end-member conditions, correspond-
ing respectively to the Voigt and Reuss elastic bounds
(e.g. Hill 1965), provide rigorous upper and lower limits
to the actual viscous strength of the rock. At both
bounds, the strength of the composite depends on the
volume proportions and rheologies of the constituent
phases (e.g. see equations 2-6 in Tullis e# al. 1991). In
the upper bound case, each grain or phase in the aggre-
gate deforms compatibly with its neighbour, whereas at
the lower bound, every phase is subject to the same
stress, regardless of its rheology, shape or position in the
microstructure. Of course, neither bounding condition
is realistic. The dissimilar rheologies of the constituent
phases give rise to stress differences and strain incom-
patibilities within the aggregate. In naturally deformed
rock, such incompatibilities are relaxed by slip at phase
boundaries, dynamic recovery and recrystallization, tex-
ture weakening, pressure solution and cataclasis (e.g.
White et af. 1980). Thus, the bulk strength of non-lincar
viscous materials lies somewhere between the viscous
strength at the uniform strain rate and uniform stress
bounds. Although these bounds certainly provide closer
constraints on actual bulk strength than extrapolated
flow laws for the constituent phases, the bounding
theorems method becomes less accurate as the bounds
diverge with increasing contrast in the rheological
properties of the phases. Averaging the bulk strength at
the two bounds (Voigt—Reuss—Hill method) yields
reasonable estimates of composite strength, but is physi-
cally unfounded and implies that the strength of the
constituent phases lies between their individual
strengths at the bounds. As demonstrated in the next
section, this is untenable for rock with an [WL micro-
structure.

Another approach is the self-consistent theory, so
called because the average stress and strain rate of the
matrix surrounding any given grain within a polyphase
aggregate are equated with the stress and strain rate of
the aggregate itself. This constrains the behaviour of any
given grain to satisfy both stress equilibrium and strain
compatibility with the aggregate as a whole, rather than
with its neighbouring grains. Because strain compat-
ibility is only maintained on the aggregate scale, local
compatibility is relaxed, allowing weak grains to deform
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faster than strong grains. The bulk stress is calculated
after each strain increment along a predetermined strain
path and adjusted to satisfy bulk compatibility. Self-
consistent theory was originally conceived to describe
the elastoplastic deformation of composite material
{Kroner 1961). It has successfully predicted the strength
of metallic and ceramic polycrystals between the uni-
form strain rate and stress bounds (e.g. Hutchinson
1976). Recently, the self-consistent theory has been
extended to large strain, viscoplastic deformation of
composite materials (Molinari et al. 1987). Viscoplastic
self-consistent (VPSC) theory has proved useful in simu-
lating texture in polycrystalline, monomineralic rock
(quartzite, Wenk et al. 1989) and polymineralic rock
(peridotite, Wenk er al. 1991). However, the basic
problem with using current VPSC theory to predict
viscous composite strengths is that it neglects the effects
of domainal structural heterogeneity on stress and strain
partitioning within the aggregate. Self-consistency con-
strains weak grains always to deform at lower stresses
than stronger grains. This contrasts with microstructural
observations below which suggest that on the supragran-
ular scale, an interconnected matrix of weak grains can
support higher flow stress than boudinaged layers of
strong grains. The conceptual implications this bears for
realistic modelling of heterogeneous polyphase flow are
explored in the latter part of this paper.

Tullis et al. (1991) performed finite element modelling
of both real and hypothetical two-phase microstructures
to arrive at a simple empirical solution: the flow law fora
two-phase rock is approximated by a power law that
passes through the equiviscous point of the constituent
phases on a stress vs strain ratc diagram and has a creep
exponent that is the volume-weighted, geometric mean
of the end-member creep exponents (their equations 10—
12). The authors point out, however, that this flow law
does not strictly apply to the IWL microstructure (Fig. 1)
at moderate to high mineral strength contrasts, This
microstructure is ubiquitous in naturally deformed rocks
over a broad range of compositions, homologous tem-
peratures and strain rates (Handy 1990).

A common feature of all the analytical solutions
reviewed above is that bulk strength is modelled as a
single, continuous function of composition, irrespective
of the microstructure. To the extent that microstructure
is specified at all (e.g. Wenk et al. 1991), no distinction is
made between LBF and IWL microstructures. Yet the
microstructures in naturally deformed rock indicate that
stress and strain partition quite differently in these two
microstructures (Handy 1990), especially in rocks with
phases having moderate 1o high mineral strength con-
trasts (z. = 5). Therefore, two constitutive equations
corresponding to these microstructures may provide a
more realistic description of heterogeneous creep in
mylonite.

This paper adopts a phenomenoclogical approach in
placing quantitative constraints on the rheology of bi-
mineralic mylonite, Microstructural observations in
naturally deformed rocks are used to show how stress,
strain and strain rate partition in rheologically and
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structurally heterogencous material. These obser-
vations pravide a conceptual basis for deriving flow laws
for two-phase aggregates with idealized LBF and IWL
microstructures. The IWL flow law is compared with the
available rheological data for experimentally and natur-
ally deformed bimineralic aggregates, as well as with
empirical and analytical solutions in the literature for the
creep of polyphase rock. The relative stability of LBF
and IWL microstructures at steady-state creep is exam-
ined in the context of a strain energy minimization
criterion for microstructural equilibrium. Fipally, the
two-phase flow laws are used to estimate the effect of
varied rock composition on the rheology of the litho-
sphere.

STRESS, STRAIN AND STRAIN RATE
PARTITIONING IN MYLONITE

Boudins in mylonite comprise either the same mineral
as the matrix (Fig. 2) or a different mineral (Fig. 3). This
structural heterogeneity refiects microscale rheological
contrasts that are inferred to evolve from the nucleation
and growth of rheological instabilities during progress-
ive shearing (Fig. 2) or to stem from minerzalogical
heterogeneity that existed prior to shearing (Fig. 3).
Measurement of the size of subgrains and dynamically
recrystallized grains in different microstructural
domains allows one to quantify the partitioning of creep
stress in the rock during mylonitization provided that:
(1) the grain size froze simultaneously in these domains
at the end of mylonitization; and (2) subsequent defor-
mation or annealing did not alter stress-sensitive micro-
structures. Grain size is related to creep stress via the
empirically and theoretically derived relation (e. g Twiss
1977, 1986):

T=3712L677, (1)

where & is the diameter of subgrains or dynamically
recrystallized grains and t is the creep stress of the
material in simple, octahedral shear. The empirically
derived material constants, L and p, are only valid for
the dynamic recovery and recrystailization mechanism
reported in the experimental calibrations in the litera-
ture (references in Fig. 4). For quartz analysed in Fig. 2,
this mechanism is progressive subgrain rotation and
subsequent grain growth (dyramic recrystallization
regime 2 of Hirth & Tullis 1992). The subgrains were
measured with an optical microscope and had crystallo-
graphic misorientations with neighbouring grains of
about 1-10°. Thus, the stress estimates reported below
from optical subgrains cannot be compared with stress
values determined from smaller subgrains visible only
with a transmission clectron microscope (e.g. White
1976). In al) analyses made here, the grain size measured
in thin scction was corrected for the two-dimensional
trancation effect (Exner 1972, pp. 32-33).

The piezometric relation in equation (1) is only appli-
cable to mylonitic rocks like those in Figs. 2 and 3 for
which the dominant strain accommeodating mechanism
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was dislocation recovery and creep. The strongly asym-
metrical crystallographic and shape preferred orien-
tations of quartz measured in these samples {c-axis
patterns in fig. 6 of Handy 1990, fig. 8 of Handy & Zingg
1991) is diagnostic of dislocation creep during predomi-
nantly non-coaxial shear. Strain partitioning in these
rocks can only be estimated qualitatively because: (1)
there are no passive strain markers; and (2) the current
grain shape may be the product of several cycles of grain
coalescence and recrystallization (Urai et al. 1986).
Despite these limitations, the qualitative conclusions
drawn at the end of this section regarding stress and
strain rate partitioning are expected to apply to any
polyphase material undergoing dislocation creep.

Mylonite with low mineral strength contrast

Mylenite with low mineral strength contrasts com-
monly occurs in shear zones where high homologous
temperatures and small grain sizes reduced strength
ratios to less than an order of magnitude (e.g. quartz—
feldspar mylonite in fig. 3 of Handy 1998). Unfortu-
nately, estimating creep stress in all minerals of granitic
or peridotitic mylonite is still impossible because experi-
mentally calibrated piezometers are currently available
for only onc of the strain-accommodating minerals
(quartz, olivine). A viable alternative is therefore to
examine hetcrogeneously deformed monomineralic
mylonite like the quartzite in Fig. 2. The same piez-
ometers can be used to compare stress in all microstruc-
tural domains.

The quartz mylonite in Fig. 2 was deformed at mid- 1o
upper-greenschist facies conditions (ca 350°C). Figure
2(a) shows that the domains of unrecrystallized quartz
comprise ribbon grains with high aspect ratios as well as
globular grains with lower aspeci ratios. These globular
grains locally deflect the ribbons and the intercon-
nected, dynamically recrystallized layers. The size of
dynamically recrystallized grains and subgrains in the
interconnected matrix is smaller in these deflected re-
gions than in the undisrupted, planar regions between
ribbon grains (compare area 2 with areas 1 and 3, Figs.
2a and 4}. This indicates that the creep stress is higher in
the matrix adjacent to the more competent globular
grain than in the vicinity of the less competent ribbons.
The subgrains in the globular grain are consistently
larger than in the ribbon grains (compare areas 4 and 5,
Figs. 2a and 4). Observed in detail, the subgrain size
generally decrcases towards the edges of the globular
and ribbon grains (Fig. 2b}. The marginal grain size
gradients are steeper in the globular grain than in the
ribbens, but the poor definition and irregular shape of
the subgrains near the ribbon rims preclude any reliable
quantification of these gradients under the optical
microscope.

The variation in subgrain size amongst the domains in
Fig. 2(a) is believed to reflect local stress gradients
within the rock during mylonitization because: (1) there
is no evidence for post-tectonic annealing and grain
growth in any domain (i.e. neither straight grain bound-
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aries nor stable grain boundary triple junctions were
observed): (2) the size distribution of optical subgrains is
unimodal within cach microstructural domain. The first
point indicates that the stress drop at the end of defor-
mation was sufficiently fast to prevent the subgrain size
in ribbon and globular grains from re-equilibrating with
stress much Jater than in the matrix. The temperature at
the end of mylonitization was also sufficicntly low, or
decreased quickly enough, to inhibit anncaling. The
second point suggests that post-mylonitic stresses were
never high enough to reset the microstructures. There-
fore, the aforementioned subgrain size gradients in the
rims of the globular and ribbon grains are interpreted to
reficct sharp increascs in creep stress from the more
competent domatins to the incompetent, dynamically
recrystallized matrix. The disparity in the creep stresses
between the contiguous matrix and the clongate, un-
recrystallized grains suggests that there may have been
considerable slip aleng their mutual boundarics.

Mylonite with high mineral strength contrast

Flow in quartz—feldspar granitic rock sheared at mid-
to upper-greenschist facics conditions is much morc
heterogeneous than in the pure quartz mylonite above
(compare Figs. 2a and 3). Quartz forms an intercon-
nected matrix of dvnamically recrystallized grains that
envelop rounded feldspar grains. This reflects the high
strength contrast between quartz and feldspar at these
conditions. The quartz grains are both smaller and more
clongate between the impinging fcldspar grains than
where the feldspar grains are further apart (Fig. 3).
Thus, stress, strain, and strain rate were locally much
higher in the quartz matrix between the feldspar grains
than elscwhere. Asin Fig. 2 above, the preservation of
unstable grain boundaries and triple junctions in quartz
indicates that the stress drop at the end of deformation
was fast enough o freeze in stress-dependent grain size
gradients on a very smali scale (Handy 1990, Prior er al.
1990). In contrast to quartz, the feldspar grains show few
traces of internal strain. Although the feldspar grains
sometimes contain evidence for local stress concen-
tration {e.g. stress twinning near mica inclusions). the
average stress within these grains during mylonitization
is inferred to have been low, certainly less than the ereep
and fracture strengths of [eldspar at the ambient press-
ure. temperaturc and strain rate of deformation.

Fandy (1990) has shown that at high shear strains, a
crude foliation comprising elongate clusters of strong
grains develops parallel to the shearing planc (sec his fig.
2b). The greater the aspect ratio of the strong grain
clusters. the lower the stress concentration in the matrix
and the more nearly uniform the stress distribution
within the aggregate (Handy 1992). This raises the basic
question of whether the IWL microstructure is a steady-
state configuration or whether it only represents an
intermediate stage in a continuous evolution towards
perfect interconnectivity of both phascs.

There is convincing cvidence that the WL micro-
structurce is indeed a steady-state configuration; shearing
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of perfectly layered, viscous materials leads to boudi-
nage of the stronger lavers and coalescence of the weak
layers (e.g. fig. 1.8 in Ramsay & Huber 1987). Perfectly
layered materials are therefore unstable with respect to
the TWL structurce. Likewisc, two-phase aggregates with
a L.BF microstructure arc unstable over a broad range of
compasitions and breakdown to an WL microstructure
(Jordan 1988, Handy 1990, discussions below), Means
{1981) cites the eyelic growth and destruction of micro-
structural elements as diagnostic of steady-state folia-
tions. In the quartzite mylonite in Fig. 2, the boudinaged
ribbon and globular grains are inferred to have coa-
lesced from smallcr protograins preserved in less de-
formed rock outside of the shear zone (fig. 8 in Handy
1987). Mecans & Dong (1982) and Urai er af. (1986)
present microstructural evidence for the cyclic growth
and dynamic recrystaliization of ribbon grains during
mylonitization. Similarly, the interconnectcd laycrs of
dvnamically recrystallized quartz in Fig. 2 contain the
entire spectrum of grain sizes and shapes, from small,
equant, treshly nucleated grains to larger, elongate
older grains, Strain-invariance is an important charac-
teristic of the T'WL microstructure because it means that
stress and strain rate partitioning within the aggregate
can he related to steady-state bulk rheology.

Inferred stress and strain rate partitioning across
rheological interfaces

Based on the piczometric measurements above, in-
ferred stress and strain rate profiles across the interface
between weak and strong phases in IWL and LBF
microstructures are drawn schematically in Fig. 5. Each
diagram in Fig. 3 includes two sets of solid vertical lines
representing the relative levels of stress and strain rate
for the limiting cases of homogencous stress and homo-
geneous strain rate within the polyphasc aggregate.

For rock with IWL structure, one might expect the
stresses and strain rates of the constituent phases always
to tall between the unitform stress and uniform strain rate
bounds (hatched areus, Fig, 3a). According to the
bounding theorems approach, the highest possible stress
and strain rate in the wcak phase occur when both
phases arc interconnected and deform at the same stress
on cither side of a coherent interface (curve 1, Fig. 5a).
In nature, however, only the weak phase is intercon-
nected and slip along incoherent phuse boundaries
maintains strain compatibility within the aggregate. As
shown in the previous scction, this condition can lead to
higher stress in the weak layers than in the strong
boudins. This accords with continuum mechanical
models that predict reduced flow stress in boudinaged
layers and concomitant stress concentration in the adjac-
ent incompetent layers subparallel to the shearing plane
(Stromgard 1973, Weijermars 1991). Because viscous
flow is isochoric and the deformation is compatible, the
weak phase is inferred to deform at a higher average
stress and strain rate than at the uniform stress bound
(curve 3, Fig. Sa). Converscly, the stronger phase de-
forms at alower average stress and strain rate than at this
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Fig. 2. (a)Hcterogencously deformed quartz mylonite comprising an interconnected matrix of dynamically recrystallized
grains (e.g. arcas 1-3) surrounding unrccrystallized ribbon (¢.g. arca 4) and globular grains (area 5). Numbers correspond
to areas in which stress-dependent grain size was measured (see Fig. 4). Section cut paralle! to XZ fabric plane. Crossed
polarizers, frame dimensions: 11.5 x 7.7 mm. (b) Subgrains at the interface between ribbon grains (ri) and dynamically
recrystallized matrix (m) in quartz mylonite. Crossed polarizers, frame dimensions: 1.4 x 1.0 mm.
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Fig. 3. Dynamically reerystallized quariz between two feldspar grains (labelled [) in a greenschist facies mylonite. Section
cut parallel to XZ fabric planc. Crossed polarizers, frame dimensions: 1.4 x 1.0 mm.
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Fig. 4. Plot of creep stroess vs dynamically reerystallized grain size (1)

and subgramn size (s) for quartz in the various microstructural arcas

numbered in Fig. 2(a). Length of grain size bars indicates population
standard deviation of grain size.

bound. Two conditions arc expected to promote such
stress partitioning: (1} the rock comprises small to
moderate amounts of weak phase; and/or (2) the stress
dependence of strain rate in the strong phase signifi-
cantly exceeds that in the weak phase (i.e. high ratios of
the creep exponents, n./n..}. For rock containing greater
volume proportions of weak phase and/or phases with
lower n /n, ratios, the stress in the strong boudins
excecds that in the weak layers at most bulk strain rates
and two-phase compositions (curve 4, Fig. 5a). Gener-
ally, the partitioning of stress and strain rate as well as
the amount ol interfacial slip betwcen the phases be-
comes more pronounced with increased mineral
strength contrast and/or with decreased volume pro-
portions of incompetent material.

The LBF structure s rarcly observed or identified in
highly strained rock (see fig. 2a in Handy 1990 tor a low
strain example). This is due partly to the ambiguous
criteria for distinguishing strong from weak boudinaged
layers in IWL and LBF structures, particularly at low
mineral strength contrasts (Fig. 1). It may also reflect
the inherent instability of the LBF structure at high
strains and moderate to high volume proportions of
weak phase (Handy 1990 and below). So unfortunately,
no natural example of an LBF structure with stress
dependent microstructures could be analysed here.
However, Treagus & Sokoutis (1992) have shown that
non-linear composite silicon matertals with low mincral
strength contrast (7, = 1.60) in an LBF structure deform
at nearly uniform shear strain rate to strains of v = 1.15
in a simple shear box (sec their figs. 5b and 9b, curve 2in
Fig. 5b of this paper). Deviations from homogeneous
strain rate occur in the immediate vicinity of the phase
boundaries. This is because weak and strong phases are
constrained to deform both compatibly and at similar
rates within the load bearing framework, thus inducing
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large differential stresses at these boundaries. These
localized differential stresses are relaxed somewhat if
the phases shp with respect 1o cach other. The nature of
this slip, as well as the stresses and strain rates at the
phase boundaries depend on strain-dependent changes
in the configuration of the weak pockets.

In the absence of detailed studies of LLBF microstruc-
tures, it is useful to draw an analogy between the
microstructural evolution of porous polyerystaltine
aggregates (e.g. Ashby ef of. 1979) and rocks with an
LBF microstructure. Similar to voids or cavities in
porous plastic aggregatces, the pockets of weak phase are
inferred to become more elongate with progressive
strain until cither: (1) their shape stabilizes within limits
corresponding to eyclic growth and boudinage at steady
state; or (2) their growth becomes unstable and they
coalesce to form interconnected weak layers. At steady
state (case 1), pocket growth involving high strain rate in
the weak phasc alternates with pocket boudinage involy-
ing high strain rate in the adjacent strong framework
{curves 5 and 6in Fig. 5b). Cyclic growth and boudinage
go on simultancously within the LBF microstructure, so
that the rock as a whole still deforms at or near unitorm
strain rate. The coalescence of weak pockets is inhibited
by dynamic recrystallization in the strong phase of the
L.BF microstructure, which facilitates rapid ductile flow
and stress relief in the neck regions between pockets
{Ashby et af. 1979). Crecp instabilities are gencrally
suppressed in rock comprising a strong phase with low
stress sensitivity (i.e. low valucs of the creep exponent,
n) and/or phases with similar bulk and shear moduti. In
case (2) above, weak pockets coalesce when the stress

d IWL microstructure

strong
houdin

strong
framework

Fig. 3. Schematic profiles of shear stress and shear strain rate across a
rheological interface within a viscous composite material at stcady-
state comprising: (a) an IWL microstructure: and (b) an 1.BF micro-
structurce. Hatched area contains stresses and strain rates between
bounds for uniform stress (curve 1) and uniform strain rate {curve 2).
Dushed and dotted curves in (a) are inferred stresses and strain rates in
an IWL microstructure bearing constituent phases with high n/n,
ratios {curve 3) and low s/, ratios (curve 4). Dashed and dotted
curves it (b) represent inferred stress and strain rate in an LB
microstructure dunng cyclic growth (curve 5) and boudinage (curve 6)
of weak products at steady state (sce text).
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d LBF microstructure

1757,

Fig. 6. Microstructures modelled in this paper for rocks with a load-
bearing framework (LBF) and interconnected weak layers (IWIL)
undergoing planc strain, simple shear. Strain compatibility is depicted
schematically as the balance of gups and overlapys (hatched arens)
produced by the heterogencous deformation ang sotation of inclusions
during progressive simple shear. Dashed lines indicate configuration
of phase boundarics for the ideal case of plane strain, homagencous
simple sheur.

concentration at the pocket tips becomes sufficiently
large to induce unstable fow in the neck regions be-
tween elongate weak pockets, causing the pockets 1o
propagate like tensile microcracks (Griffith et al. 1979).
In contrast to voids, however, the weak pockets have
finite vatues of the bulk and shear moduli. For a given
strain, weak pockets are therefore cxpected to remain
stuble to higher volume proportions of weak phase and/
or to require greater strain to coalesce than voids.

A significant point to cmerge rom the microstructural
analyses above is that the stress contrast of two phases
within a composite material differs considerably from
their strength (i.e. competence) contrast. Strength con-
trast depends on the material parameters of the constitu-
cnt phases and on the bulk strain rate, tcmperaturc and
pressure, whereas stress contrast varies with the strength
contrast, the volume proportions, and the distribution of
the phases in the composite. This distinction becomes
important in the next section.

PHENOMENOLOGICAL FLOW LAWS FOR NON-
LINEAR VISCOUS TWO-PHASE MATERIALS

General conditions and assumptions

Consider a hypothetical two-phase rock undergoing
plane-strain, simple shear at constant bulk shcar strain
rate, v,.. The volume proportions of the two minerals in
the rock remain constant with strain. These phases form
a steady-state foliation (Mcans 1981) that 1s aligned
subparalle! to the plane of shear. In an ideal LBF
microstructure (Fig. 6u), this foliation comprises a
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strong phase containing a pocket of weak phase,
wherecas in an idcal IWL microstructure the foliation
consists of 2 weak matrix surrounding a stronger phase
(Fig. 6b). ln both microstructurcs, all mineral phases in
the rock are viscous isotropic materials that deform
compatibly and isochorically by dislocation creep. Any
dilatancy within, or mass-transter between, the phases is
assumed to be negligible, Note that for the strain to be
compatible in the LBF and WL microstructures in Fig.
6, the phases must deform heterogencously and their
boundarics must accommeodate ship. This is especially
true of rock with [WL structure that contains large
volume proportions of a rclatively strong phase under-
going noncoaxial flow to high shear strains.

A key to deriving the polyphase flow laws in the next
section is the notion that the rate of viscous strain energy
dissipation in a rock is equal to the sum of the effective
rates of strain energy dissipation in the constituent phases
of that rock:

N
Ervr = Z Ti}l’iv.‘- (2)
i=1

where the rate of viscous shear strain encrgy or power
dissipated in a rock, £, of volume V. is equal to the sum
of the inner products of the shear stress and incremental
shear strain rate tensors. 7;and 3, and the volume. V;, of
cach of the N constituent phasces, {. For the two-phase
aggregate considered in this paper, cquation (2) simpli-
fies to:

E, = 1t + T, (3)

where $,, and y, are the octahedral shear strain rates of
the weak and strong phases, r,, and 1, are the corre-
sponding octahedral shear stresses in these phases, and
where ¢, and ¢, arc the volume proportions of weak and
strong phases in the two-phase rock. The velume of the
whole rock is set equal to one, so that the volume
proportions ol the phases sum (o unity, ¢, + ¢, = 1.
Equations (2) and (3) arc actually adaptations of Ein-
stein’s (1909, 1911) concept of viscous encrgy dissipation
in slowly deforming, viscous suspensions contuaining
rigid spheres. In this context, it is important to peint out
that shearing of the rock is assumed to be isothermal.
The viscous strain encrgy is dissipated quickly enough to
avoid shear-heating and any feedback eftects this might
have on the rheology (Hobbs & Ord 1988) or chemical
stability (c.g. Rutter & Brodie 1987) of the phases
making up the rock.

Because tlow of the hypothetical rock is isochoric and
strain compatibility is maintained amongst the constitu-
cnt phases (Fig, 6). the effective (i.¢. volune-weighted)
average strain rates of the weak and strong phases are
additive in both LBF and IWL microstructures:

}’f = }.J\\'¢\\' + :"’§¢)ﬁ‘ (4)
where ¥ and 77, are the averaged octahedral shear strain
rates of the weak and strong phases, respectively, and
where ¢, and ¢, have been defined above. This relation
is important in two respects: first, it allows the average
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strain rate of a phase to be calculated if the bulk strain
rate, the volume proportions of phases, and the average
strain rate of the remaining phase are known (equation 9
below); second, because slip is allowed between the
phases equation (4) implies that the average stress in the
two phases can ditfer. This condition pertains especially
to the IWL microstructure.

Strain rate is related solely to the differential creep
stress in the rock because inertial forces are negligible at
the slow, natural strain rates considered here
(107°-107'% s7!). Therefore, the empirically derived
constitutive equation for creep relating shear stress to
shear strain rate in the constituent phases in equations
(3) and (4) is (after Weertman 1968):

— l Qr' ?i
woely ]} o

where 7 is the average shear strain rate in the i-th phasc
at temperature T, O, is the activation enthalpy of creep,
n; is the creep exponent and A; is a pre-exponential
function. The factor 3***!2 (Nye 1953, Stocker &
Ashby 1973, Schmid et al. 1987) converts the stress and
strain rate tensors from the pure shear configuration of
the triaxial experiments to the plane-strain simple (octa-
hedral) shear configuration assumed here. The value of
r;obtained at an average shear strain rate in equation (5)
slightly exceeds the average shear stress because of the
non-linear rclationship between stress and strain rate in
minerals undergoing dislocation creep (# > 1 in
equation 5). This discrepancy in stress values is greater
at low strain rates and for materials with large creep
exponents. Inaccuracies in stress estimates arising from
the assumption of average strain rate for the constituent
phases are discussed at the end of the next section.

Deriving composite flow laws for rocks with ideal LBF
and IWL microstricctures

In a rock deforming at steady state with an ideal LBF
microstructure, the load-bearing framework of strong
phase forces the pockets of weak phase to strain at the
same rate, regardless of any rheological contrast be-
tween the phases (Fig. 6a). The experiments of Treagus
& Sokoutis (1992) reviewed above indicate that devi-
ations from uniform strain rate are very small, justifying
the simple assumption that the average strain rate of the
constituent phases is uniform and equals the strain rate
of the rock. Therefore, the viscous shear strength of a
two-phase rock with an LBF microstructure, 725" is
obtained by substituting the bulk shear strain rate into
all strain rate terms in equation (3}, then dividing the
resuftant power dissipation for the whole rock by the
same bulk shear strain rate. This yields the familiar
upper bound strength of polyphase rocks:

‘rll:'BF = r\Vl’¢W + IST¢S! (6)

where 7, and 1, are the octahedral shear stresses in
weak and strong phases at temperature, 7, and at the
overall shear strain rate of the rock, y,. The strain energy
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approach used here to obtain equation (6) for a rock
with LBF structure contrasts with past derivations of this
equation which employ a continuum mechanics
approach and assume that both phases are contiguous
within the shearing plane (e.g. Weijermars 1992},

Deriving a steady-state constitutive equation for rocks
with an ideal TWL. microstructure (Fig. 6b} is more
difficult because stress and strain rate partitioning in the
aggregate depends on the viscous strength contrast be-
tween the constituent phases, as well as on the relative
amounts of these phases. The viscous shear strength
contrast, T, is defined here as:

T = —, (7)

where 7, and 7., are the octahedral shear stresses in the
strong and weak phases measured separately (i.e. out-
side the aggregate) at temperature, 7, and at a reference
shear strain rate that equals the overall shear strain rate
of the aggregate, .. The dependence of stress and strain
rate partitioning on ., is constrained by considering the
following limiting conditions from the microstructural
observations in the previous section:

(a) As the viscous strength contrast of the phases
becomes infinite, the bulk strain rate is concentrated
into the volume of rock comprising the weaker phases,
while the average strain rate of the stronger phase
approaches zero:

Fow= ' 70,
where

0< o, <1

(b) If the viscous strength of the two phases is equal,
then the strain rate of the rock is equal to the strain rate
in both phases (homogeneous deformation) for all vol-
ume proportions of strong and weak phases:

;W:F}S:}'}T al 0<¢)\V<l'

These constraints are now used to seek an expression
that describes how the average strain rate in the weak
phase varies with the strain rate of the rock, and with
both the volume proportions and the viscous strength
contrast of the two constituent phases. This expression
has a form similar to the limit in condition (a) above:

(8)

where xis a function of r.for | = r_ = o, The function x,
here named the strain rate concentration function, is a
measure of the r-sensitivity of strain rate partitioning in
the rock. Specifically, it determines how much of the
total strain rate is accommodated by the volume of weak
phase. An expression analogous to equation (8) for the
average strain rate of the strong phase is obtained by
substituting equation (8) into equation (4) and solving
for 7.

.;\V = "jf¢;x)

?5 = }'r(l - ¢w)_l(l - ¢\l~—x . (9)
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Fig. 7. Strain rate concentration vs volume proportion of weak phase
in two-phase aggregates with an IWL microstructure. (a) is a plot of
equation (8), (b) is a plot of equation (9). Both equations incorporate
the function x = (1 — 1/z.) in equation (10}, allowing the diagrams to
be contoured for different values of the viscous strength contrast, 7.

The r.-dependence of x in equations (8) and (9) can be
constrained in the following way: (1)0=x = 1 forO < ¢,,
< 1 {conditions a and b); (2) x — 1 as 7. — c« (condition
a); (3) x —» 0 as 7. — 1 (condition b). The simplest
expression of x that is a smooth function of r_ and that
satisfies all the constraints above is:

.w:=1—l
TC

when 0 <2 ¢, < 1. (10)
In monomineralic rocks, x is undefined and so obviously
Vo =7 at ¢, = L and ¥, = y, at ¢, = 0. Although
equation {10) is certainly not a unique solution to the
constraints above, this writer could find no constraints
for values of 7. between 1 and =« to warrant the use of a
meore complicated function for x. Despite this limitation,
equation (10} provides a reasonable approximation of
the 7-sensitivity of strain rate partitioning in two-phase
aggregates (see next section).

Figures 7(a) & (b) furnish a direct demonstration of
equations (8) and (9}, respectively, for varied strength
conirasts of the constituent phases in a hypothetical two-
phase rock. They illustrate the physical significance of
the strain rate concentration factor, x, in equation (10).
The concentration of average strain rate and creep stress
into the weaker phase of a rock with IWL microstructure
increases with decreasing abundance of that phase and/
or with increasing viscous strength contrast between the
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two phases (Fig. 7a). Conversely, the average strain rate
of the strong phase decreases with decreasing abun-
dance of that phase and increasing strength contrast
between the phases (Fig. 7b). Figure 7(a) also indicates
that the average strain rate (and therefore also stress) in
the interconnected weak phase of an IWL structure rises
to infintty at suffictently low values of ¢,,. This is geologi-
cally unrealistic because creep stress cannot exceed the
brittle strength of the material. In this paper, it is
proposed that the upper limits to the stress and strain
rate in the interconnected weak phase coincide with a
balance in the rate of strain energy dissipated by the LBF
and TWL structures at equal bulk strain rate and tem-
perature. This criterion for structural stability is dis-
cussed further below.

The rate of viscous shear strain energy dissipated in a
rock with an IWL microstructure, EI™", is obtained by
substituting equations (8) and (9) into all the strain rate
terms in equation (3). Dividing the resultant E'™" by ¥,
yields the viscous shear strength of a rock with an IWL

microstructure, 7. "

WL _ 1--x
Tr - rw¢w + T
S

(1-¢u™),

——

(1)
where t,, and 7, are the octahedral shear stresses in the
weak and strong phases, respectively, at 1, and % and at
given ¢,,.

To summarize this section, equations (6) and (11)
express the steady-state viscous strength of two-phase
rocks with LBF and IWL microstructures solely in terms
of the bulk strain rate, the temperature, the volume
proportions of the constituent phases, and the rheologi-
cal constants of these phases. The microstructure with
the lower overall rate of viscous strain energy dissipation
in cquation (3) is the configuration expected to remain
stable in a rock deforming at a given temperature and
strain rate.

COMPARISON OF THEORETICAL FLOW LAWS
WITH COMPUTED AND EXPERIMENTAL
RHEOLOGIES OF BIMINERALIC ROCK

Currently, only two experiments on bimineralic
aggregates from the literature can be compared with the
flow laws in equations (6) and {11): (1) the finite element
simulation of creep in plagioclase—clinopyroxenc aggre-
gates (Tullis er al. 1991}; and (2) the laboratory defor-
mation of diabase (Shelton & Tullis 1981) at mineral
strength contrasts of 4 and less. These experiments were
chosen because both phases in the aggregates deformed
by dislocation creep and their rheologies are well
known. Use of these data also facilitates a direct com-
parison of the two-phase flow laws proposed in this
paper with the empirically derived flow law of Tullis ef
al. {1991). Unfortunately, bimineralic aggregates with
higher viscous strength contrasts (Price 1982, Jordan
1987} contain strong phases that deformed cataclasti-
cally and their strength-composition data are therefore
unsuited for comparison with the theoretical flow laws in
this paper.
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Fig. 8. (a) Logshcarstrain (MPa) vs log shear strain rate (s™1) diagram for a hydrous clinopyroxene—plagioclasc aggregatc.
Extrapolated end-member flow laws (dotted curves), uniform stress and uniform strain ratc bounds (dashed curves), IWL
flow law for cpx—plag rock from cquation (11} in this paper (solid curve), empirical low law for diabase of Tullis et al. (1991)
{dashed-dotted curve), computer-simulated strengths for deformed diabase (grid 3 of Tullis et af. 1991) (large dots).
Rheological parameters for constitucnt phases are taken from experiments of Sheltan & Tullis (1981) performed at 1000°C
and 107* 57" albitic plagioclase: 7 =3.9, 0 =234 kI m~! 4 = 2,51 x 107 MPa™" 5 '; clinopyroxene; n = 2.6, Q = 335 kJ
m™', A = 1585 MPa " s7'. (b) Plot of normalized shear stress vs volume proportion of plagioclase for hydrous
plagioclase—linopyroxene apgregates. Uniform stress and uniform strain rate bounds (dashed curves), theoretical flow law
for cpx~plag rock with I'WL microstructure from equation (11} in this paper (thick solid curve), empirical flow law of Tullis
etal. (1991) (dashed—dotted curve), experimentally determined flow law for Maryland diabase from Shelton & Tullis (1981)
{thick horizontal linc). Note that this diagram is constructed for the same conditions as used by Shelton & Tullis (1981) to
detcrmine the flow laws of the constituent phases, Crecp parameters for the plagioclase and clinopyroxcnc cnd-members
arc identical 1o those in (a). Creep parameters for Maryland diabase determined at 1000°C and 107° 57! {Shelton & Tullis
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The stress vs strain rate diagram in Fig. 8(a) compares
the synthetically computed and theoretically predicted
creep stresses for a foliated diabase containing 36 vol. %
plagioclase and 64 vol.% clinopyroxene, and deforming
at a temperature of 1000°C with bulk shear strain rate
ranging from 10” % to 107 '?s™'. At these conditions, the
shear strength ratio between plagioclase and clinopyrox-
ene varies from 4 (plag stronger than cpx, 7, = 107% 57!
through 1 (equiviscous point in Fig. 8a) to 2.65 (cpx
stronger than plag, 7. = 107'2 s7), Both phases arc
highly contiguous in the foliation plane, with plagioclase
slightly more interconnected than clinopyroxene (sce
fig. 1b of grid 3 in Tullis et al. 1991). Figure 8(a) shows
that the rock strength predicted with the IWL flow law
{solid line) lies well within the strengths derived from the
extrapolated ¢nd-member flow laws (dotted lines) and
the uniform stress and uniform strain ratc bounds
{dashed lines) over the complete range of natural to
simulated strain rates. However, the ITWL flow law
predicts consistently lower strengths for diabase than
does the finite element simulation of Tullis ef al. (1991).

The normalized rock strength vs composition diagram
in Fig. 8(b) is constructed with the same flow laws as in
Fig. 8(a) for a bulk shear strain rate of ¥, = 107 57!,
Normalized strength on the left-hand axis of Fig. 8(b) is
merely the strength of the rock normalized to the
strength of the stronger phase (the strength of clinopyr-
oxene is set equal to 1) and scaled against the strength
contrast, 7., of clinopyroxene to plagioclase on the
right-hand axis. The strength for rocks with the ideal
LBF, uniform strain rate flow law and the IWL tlow law
bracket the experimental creep strength of Maryland
diabase at ¥, = 10~ *s™! (horizontal bar in Fig. 8b). For

comparison, the empirical flow law of Tullis et af. (1991)
calculated with their equations (10)-(12) is an excellent
fit both to the cxperimental diabase strength (Fig. 8b)
and to their computer-simulated diabase strengths
across the entire range of strain rates and bimineralic
compositions (dashed-dotted curve, Figs. 8a & b).

The ideal LBF, uniform strain rate flow law clearly
overestimates experimental and computer-simulated
diabase strengths becaunse both plagioclase and clinopyr-
oxene constitute lenticular layers within the foliation
plane. There are two main reasons why the IWL flow
law underestimates the experimental and computer-
simulated diabase strengths: (1) the r.-dependence of
the strain rate concentration function, x, may be less
than that derived using the available constraints in
equation (10); (2) the use of average strain rates in
equations (8) and (9) neglects the effect of localized
stress concentration on bulk rock strength. Where layers
of weak phase are constricted between stronger phases
(e.g. Fig. 3), crecp stress and strain rate rise non-linearly
above ambient levels in the IWL. microstructure (Handy
1990, 1992). This effect becomes more pronounced with
increasing v, and increasing amounts of strong phase in
the rock.

In summary, two-phase rock strength predicted with
equation (11) for an IWL microstructure is closer to the
uniform stress bound than to the uniform strain rate
bound over a broad range of compositions. In aggre-
gates with fow mineral strength contrasts (7. < 4) and/or
with low volume proportions of a weak phase (¢, <
0.1), the apgregate strength approaches the uniform
strain rate bound for an ideal LBF microstructure
(equation 6).



298

M. R. Hanpy

rUn:Ir_oL

’I:Ieldspar 0.6 |

quartz

Fig. 9. Structural stability diagram for quartz—feldspar rock. Rock strength on the left-hand axis is normalized to the

viscous strength of feldspar (strength of feldspar is sct equal to 1), Viscous strength ratio of feldspar to quartz increascs

downwards on the right-hand axis. The thick curve marks the boundary between the LBF and IWL fields. The thin curves

are contours of normalized rock strength at different values of mineral strength contrast, 7. Microstructural insets depict

the steady-state configuration of strong phase (stippled), weak phasc (white) and flow lines {dashes). Creep parameters of

the hydrous cnd-member phases: quartzite: 1 = 2.4, ¢ = 163 kI m™', A = 1073 MPa™ s™! (Jaoul et al. 1984); albitic
plagioclase: n = 3.9, 0 =23 kI m™ ", A = 2.51 X 10"°MPa "5~ (Shelton & Tullis 1981).

IMPLICATIONS FOR THE RHEOLOGY AND
MICROSTRUCTURE OF POLYMINERALIC
ROCKS

Figure 9 is a structural stability diagram for quartz—
feldspar rock spanning the compositional range from
diorite, through granite, to quartzite. It contains LBF
and IWL fields contoured for normalized rock strength
at different mineral strength contrasts. The microstruc-
wral insets in Fig. 9 show how steady-state polyphase
configuration varies within the diagram as a function of
composition and mineral strength contrast.

Diagrams like Fig. 9 can be constructed for any two-
phase aggregate with equations (6) and (11). The bound-
ary between the LBF and IWL fields is the locus of
points at given values of ¢, ¥, and temperature where,
according to these equations, both microstructures yield
the same bulk strength and so dissipate identical
amounts of strain energy per unit time. On either side of
the LBF-IWL boundary, the more stable microstruc-
ture is assumed to be that configuration which is weaker
at a given 7, and therefore dissipates less strain energy
per unit time during stcady-state deformation. Each
contour of normalized rock strength at a constant
mineral strength contrast is determined for a given
temperature and bulk shear strain rate in equations (6)
(LBF field) and {11} (IWL fieid).

The TWL microstructure is predicted to be more
stable than the LBF microstructure during steady-state
flow over a broad range of compositions and viscous
strength contrasts between the constituent phases (Fig.

9). This is consistent with the observation that the [WL
microstructure is much more common than the LBF
microstructure in highly strained rocks, even at low ¢,
values. The critical volumc proportion of weak phase at
the boundary between the LBF and IWL microstruc-
tural stability fields depends on the mineral strength
contrast (see detailed inset, Fig. 9). This is a function of
both the creep parameters of the constituent phases and
the temperature and bulk strain rate of deformation. For
given temperature and bulk strain rate, low ratios of the
creep activation energies ((Q,/Q,, <. 1.5) and high ratios
of the creep exponents (ny/n,, > 1) expand the stability
field of the LBF microstructure to values of ¢, = 0.1 in
Fig, 9. Moderate to large /., ratios (>1.5) and low
ng/n, ratios (<1} restrict the LBF microstructure to
values of ¢, << 0.1 in the upper left-hand corner of Fig.
9.

The contours in the LBF ficld of Fig. 9 indicate a
nearly linear dependence of normalized aggregate
strength on two-phase composition at low ¢, values,
whereas the contours in the IWL field are highly non-
linear, especially at high mineral strength contrasts and
low ¢, values. While this obviously reflects the assump-
tions made in equations (6) and (11), it is also intuitively
reasonable: If strong phase could be added to a rock
comprising two phases at given r., the rate of work
would increase more rapidly in a rock with IWL micro-
structure where the interconnected weak phase deforms
much faster than the strong phase, than in a rock with
LBF microstructure where the pockets of weak phase
deform at same rate as the framework of strong phase.
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Fig. 10. Inferred strain-dependent evolution of the LBF and IWL fields in a schematic structural stability diagram: (a)

undeformed state; (b) low strain stage typicaily achicved in triaxial experiments; (¢) intermediate strain stage; and (d)

stcady state. Arraows indicate the strain-dependent movement of the LBF-IWL. boundary (thick curve) and a contour of
normalized rock strength at constant r, (thin curve).

The difference in the strain rates of the weak phasc in the
two microstructures grows with increasing viscous
strength contrast between the phases (recall Fig. 7).
The hypothesis of strain energy minimization
employed above to distinguish fields of microstructural
stability during steady-state creep only compares end-
member states of power dissipation for LBF and TWL
microstructures. It does not describe the structural and
mechanical changes leading to these states. Figure 10isa
qualitative attempt to illustrate this cvolution based
partly on insight from experimental triaxial deformation
of two-phase aggregates and partly on inference. In the
unstrained state (Fig. 10a}, the configuration of the LBF
and IWL fields reflects the geometry and distribution of
phases in the rock, and therefore also mirrors the rock’s
previous geologic history, As drawn in Fig. 10(a), the
broad LBF field betrays extensive contiguity of the
strong phase, such as might occur in a massive magmatic
rock. Experiments show that after only modest axial
strains (10-30%) the load-bearing framework of the
strong phase disintegrates rapidly (Figs. 10a & b) as the
weak phase flattens and interconnects to form micro-
shear zones within the plane of shear (Le Hazif 1978,
Jordan 1987). Rocks with low to moderate ¢, values
that contain minerals with very high strength contrasts
(r. > 10-100) behave like porous sintercd aggregates
(Tharp 1983) except that the pores or pockets of weak
phase have finite strength. The LBF-IWL boundary in
Fig. 10(b} is extended steeply downward to reflect this
expectation {see discussion in Handy 1990). After
further strain, the LBF field shrinks upwards and to the
left in Fig. 10(c) as progressively smaller volume pro-
portions of unstable weak pockets coalesce to form
interconnected layers. The time and strain to coalesc-
ence are inferred to be greater for lower values of 7,
and/or ¢, (see Ashby et al. 1979). The contours of
normalized rock strength in the LBF field remain
stationary with strain, reflecting the constant strain rate
condition within the aggregate. Tn the TWI. field, how-
ever, these contours migrate downward as progressive
foliation development decreases stress concentration in
the weak interconnected matrix (Jordan 1987, Handy
1990). The strain-dependent transition from a LBF to an
IWL microstructure can be likened to a spontanecus,

irreversible change in the internal configuration of the
rock. The steady-statc LBF-IWL boundary in Fig. 10(d)
may therefore reflect a thermodynamic statc at which
the rates of strain energy dissipation and configurational
entropy dissipation in the two microstructures are equal
and invariant with time and strain.

The phenomenologically derived flow laws in this
paper arc conceptually more realistic in their treatment
of microstructure than previous approaches reviewed in
the Introduction. However, there are numerous points
where the model of polyphase creep in this paper could
be refined. The strain rate concentration function, x, is
certainly more complicated than proposed in equation
(10). There may exist additional constraints to those
above that better define this function or that incorporate
the nonlincar effects of stress concentration. In the
absence of such constraints, x may be treated as a purely
empirical function of 7. and fitted to experimental
strength vs composition relations as more data become
available. Another shortcoming of the model is that it is
only valid for mechantcal and microstructural steady
state. The model does not incorporate any of the inter-
active feedback effects that strain-dependent changes in
microstructure may have on rheology (e.g. Mitra 1978).
The shape of the phases is not specified, although Tullis
et al. (1991) point out that this may not be a serious
deficiency in the case of the LBF microstructure. Defor-
mation mechanisms other than dislocation creep are not
included in the model, even though cataclasis, diffusion
creep and/or pressure solution mechanisms are fre-
quently inferred to operate in at least one phase of many
mylonitic rocks (e.g. White et af. 1980). Fueten & Robin
(1992) suggest that viscous creep by pressurc solution
results in a parabolic variation of composite strength
with two-phase composition (their fig. 1). Stress and
strain configurations deviating from the plane-strain,
simple shear geometry assumed here can significantly
influence the rheology of heterogeneous materials, par-
ticularly if there are fewer than the five independent,
interconnected zones of weakness required to maintain
strain compatibility in three dimensions (Von Mises
criterion). Averaging the strain rate in all constituent
phases (equation 4) simplifies the mathematics, but
leads to a slight, consistent underestimation of compo-
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Fig. 11. Log shear strain (MPa) vs depth (km) diagrams for a crustal
section comprising *granitic’ quartz—feldspar upper crustal rocks and
‘gabbroic’ feldspar-pyroxenc lower crustal rocks. The diagram is
constructed for an average geothermal gradient of 20°C km~! and a
regional strain rate of 10~ s-!. Crecp parameters of the hydrous
end-member phases: quartzite (Jaoul er al. 1984}, albitic feldspar
{Shelton & Tullis 1981), clinopyroxecne (Boland & Tullis 1986).
Frictional sliding constants taken from Byerlee (1978).

site viscous strength. Finally, the concept of viscous
strain energy partitioning (equation 2} and the strain
energy minimization criterion for structural stability
require testing in the laboratory. Synkinematic micro-
scopy of rock-analogue materials (Means 1981) is a
promising way of testing these ideas. Pending further
refinement, the model of polyphase flow proposed in
this paper remains a first-order approach that provides
relatively simple analytical solutions to the rheology of
pelyphase rocks.

APPLICATIONS TO CRUSTAL RHEOLOGY

The two-phase flow laws proposed above can be used
to estimate the effect of varied rock composition on the
rheology of the continental crust. In addition, the close
relationship between microstructure and mineral
strength contrast can be used to predict the steady-state
microstructure of mylonites at various depths and com-
positions.

The shear stress vs depth profiles in Fig. 11 are
constructed with equation (11) for the viscous creep of
two-phase rocks and with the Navier—Coulomb law for
frictional sliding in compression and extension (see
Meissner & Strehlau 1982 for details of construction).
The diagram is valid for an average geothermal gradient
of 20°C km™" and a regional shear strain rate of 107
s~!. The crustal section comprises quartz—feldspar and
feldspar—pyroxene rocks, representing intermediate and
basic rocks of the upper and lower continental crust,
respectively. The foliation in all rocks is assumed to lie
horizontally. Figure 11 includes curves for the pure
constituent minerals in the rocks (dashed lines) and for
selected values of ¢, from 0.1 to 0.8 (solid lines).
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According to the strain energy criterion of microstruc-
tural stability outlined in the sections above, only the
IWL microstructure is stable over this compositional
range in these rocks, so stress—depth curves for the LBF
microstructure are not shown.

The curves in Fig. 11 indicate that rock composition,
in addition to geothermal gradient and regional strain
rate affect the viscous strength of the crust and the depth
of the transition from frictional sliding to viscous creep.
In quartz-feldspar rocks, as little as 10-20 vol.% of
quartz reduces the composite viscous strength to less
than half of that of feldspar and significantly raises the
depth of the frictional to viscous transition from that of a
pure feldspar rock (Fig. 11). The viscous strength con-
trast between quartz and feldspar is sufficiently high (8 <
t. < 40) to justify the simple assumption that quartz
governs the bulk strength for all two-phase compositions
with ¢, greater than (0.1, Clast-matrix microstructures
are expected to predominate in quartz—feldspar rocks,
except where syntectonic metamorphic reactions induce
growth of weaker phases at the expense of feldspar (e.g.
fig. 5 in Handy 1990). In gabbroic rock, the disparate
activation energies of plagioclase and pyroxene cause
mineral strength contrasts to vary from 35 at 600°C (20
km depth} to unity at 900°C (50 km depth) for the
regional shear strain rate of 107" 57!, At these depths
and temperatures, pyroxene is expected to form boudins
and clasts in weak matrix of interconnected feldspar. For
temperatures greater than 900°C at the equiviscous
point, the relative strength of pyroxene and feldspar
inverts, and pyroxene is predicted to be the weaker
interconnected phase.

The predictive quality of Fig. 11 is limited by the
simplifying assumptions underlying equation (11) and
the poor accuracy of the extrapolated flow laws for the
constituent phases (Paterson 1987). Nevertheless, the
predictions are confirmed by observations in naturally
dcformed rocks: quartz and feldspar are inferred to be
the weakest, interconnccted phases, respectively, in
granitic and gabbroic tectonites deformed under con-
ditions ranging from the upper-greenschist to granulite
facies (e.g. fig. 9b in Handy & Zingg 1991).

There are many potential applications of the theory in
this paper to other geological problems, ranging from
the behaviour of kinematic indicators in mylontte to the
interpretation of microstructural gradients across mylo-
nitic shear zones. The phenomenological approach
developed here may provide a realistic conceptual basis
for future experimental and theoretical studies of micro-
structural stability in mylonite.
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