Verwitterung + Lagerstättenbildung

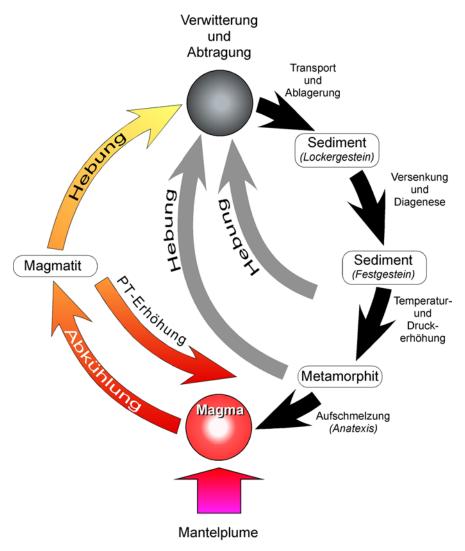
S/Ü 24223 a+b - Sommersemester 2014 - Prof. Dr. Walter Franke

Termine: 25. 4. / 2. + 9. + 16. + 23 + 30. 5. / 6. + 13.6. 2014

Geocampus Lankwitz, Haus C, Großer Seminarraum 13:00 bis 17:00 Uhr

Das Skript ist kein Lehrbuch, es ersetzt nicht die Lehrveranstaltung und soll Ihnen weitgehend das Mitschreiben abnehmen. – Nachfragen sind während der LV jederzeit möglich!

Schein bei regelmäßiger Teilnahme und schriftlicher Hausarbeit (Abgabe bis Ende der Semesterferien) oder mündlicher Prüfung.


Definition

Physikalische Verwitterung und chemische Verwitterung laufen in der Natur praktisch immer parallel ab.

- Als physikalische Verwitterung werden Zerkleinerungsvorgänge zusammengefasst, bei denen keine Änderung der Phasenzusammensetzung auftritt.
- Die chemische Verwitterung von Silikaten kann als irreversible Auflösung des Minerals in Wasser aufgefaßt werden, der in der Natur meist unmittelbar die Bildung neuer Minerale aus den gelösten Bestandteilen folgt. Insbesondere die Ergebnisse der Untersuchung der Gesteinsproben der Mondoberfläche zeigten, daß ohne Wasser überhaupt keine chemische Verwitterung eintritt.

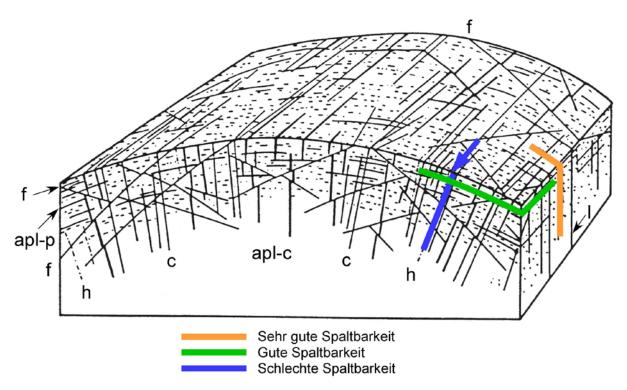
Diese Definition ist für praktische Zwecke völlig hinreichend, ihre Grenzen zeigen sich bei Impaktvorgängen ⇒ Aufschmelzung, Verdampfung, selektive Kondensation: Tektite, diaplektische Gläser, HP-Modifikationen Dabei tritt auch ohne Wasser eine Phasenumwandlung ein-

Verwitterung und Abtragung sind der exogene "Motor" im Kreislauf der Gesteine!

Der Kreislauf der Gesteine

Physikalische Verwitterung = Zerkleinerung

Die Druckfestigkeit von Gesteinen liegt im Bereich von 200 bis maximal 4000 kg/cm², dagegen beträgt die Biegezugfestigkeit meist etwa nur 10% dieses Werts!!


Die Zugfestigkeit von Stahl: ca. 4000kg/cm²!

Die geringe Zugfestigkeit von Gesteinen und Mineralen ist <u>nicht</u> auf die geringe Festigkeit der Kristallgitter zurückzuführen! Sie ist bedingt durch Baufehler, insbesondere Stufenversetzungen, bei Mineralen und bei Gesteinen zusätzlich durch schwächere Bindungen an den Korngrenzen. - Oxyd-Gläser mit völlig analogen Bindungen haben eine hohe Zugfestigkeit. (700 - 900 kg/cm²)

Thermische Ausdehnung (Pro °C \triangle I / I = ß = ca. 10⁻⁵ °C⁻¹ für Gesteine)

(1 m Länge, 50°C Temperaturdifferenz, Längenänderung 0,5 mm)

Temperatur nimmt nach innen exponentiell ab. Schattenseite! ⇒ **Lockerung des Gesteinsverbandes**, **Abplatzen**, **Kernsprünge**.

H. Cloos' diagram showing the major types of fracture occurring in a batholith: c, cross joints; I, longitudinal joints; f, flat-lying faults some of which are planes of stretching; apl-c and apl-p, aplitic dikes r, rift; h, hardway /after Balk, 1937).

Wollsackverwitterung von Graniten:

"Granit-Tektonik" nach Cloos: Granitplutone zeigen im lokalen Bereich eine Spaltbarkeit, bzw. Rissbildung nach drei Ebenen, die annähernd rechtwinklig aufeinander stehen. Wahrscheinlich bedingt durch Spannungen, die durch die Umwandlung von Hochquarz in Tiefquarz bei ca. 572° C beim Abkühlen des Plutons auftreten (Kombination von radialen u. axialen Richtungen.) Granite sind daher oft Wasserleiter. An der Oberfläche durch Zurundung der Kanten der Blöcke: Wollsackverwitterung. - Oft auch plattige Absonderungen parallel zur Oberfläche.

Orthogonale Klüfte werden aber zuweilen auch bei Qz-freien Plutoniten, wie etwa bei Gabbro beobachtet.

Basalte und Qz-arme intermediäre Vulkanite, die an der Erdoberfläche schnell abkühlten, zeigen nur dort ein polygonales Rissmuster ⇒ <u>Basaltsäulen.</u> (Unterschied: Erstarrungstemperatur von Basalt ca. 1000°C, die Erstarrung von Granit liegt im T-Bereich von ca. 780 - 640°C.)

Die Erde ist ein nasser Planet, etwa 72 % der Oberfläche ist dauernd von Wasser bedeckt. Mit Ausnahme von H_2O sind alle anderen Verbindungen der ersten Periode des Periodischen Systems von Bor bis Schwefel gasförmig. Diese Ausnahme ist bedingt durch Wasserstoffbrückenbindungen.

Im festen Zustand (Eis I) liegt ein hexagonales Gitter aus OH₄-Tetraedern vor, das etwa der Symmetrie der Hochtridymit-Struktur von SiO₂ entspricht. Auch im flüssigen Zustand liegt eine tetraedrische Nahordnung vor.

Dichtemaximum des flüssigen Wassers bei 4°C Ausdehnung beim Übergang in Eis I ca. 9% (1/11)→ Frostsprengung Eis I beständig bis ca. 2000 bar.

Wasser hat von allen natürlich vorkommenden Substanzen die höchste spezifische Wärme.

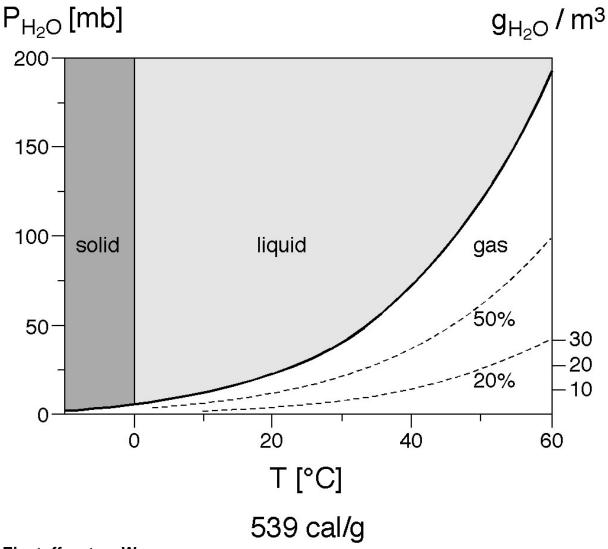
Verdampfungswärme = 539 cal/g bei 100°C (596 cal/g bei 29°C)

Schmelzwärme = 80 cal/g

Verfolgt man die Änderung der Dichten von flüssigen Wasser und koexistierenden gasförmigen Wasser längs der Dampfdruckkurve, so zeigt sich, dass die Dichte der Flüssigkeit mit steigender Temperatur abnimmt; dagegen steigt die Dichte der gasförmigen Phase. (Erklärung: Flüssigkeit ist nicht komprimierbar, deswegen überwiegt der Temperatureinfluß. Dagegen sind Gase komprimierbar, hier überwiegt der Einfluss des Drucks.)

Wenn die Dichte von Wasser(flüssig) und Wasser(Gas) identisch werden verschwindet der Unterschied = Kritischer Punkt

Der kritische Punkt des Wassers liegt bei 374°C und 220 bar. Oberhalb der kritischen Temperatur lässt sich H₂O nicht mehr durch höhere Drücke in den flüssigen Zustand überführen, man bezeichnet diesen Bereich als überkritisch. Die überkritische Phase verhält sich wie ein Gas, sie ist nicht mehr volumenstabil; das Lösungsvermögen für Silikate und Oxide ist erhöht.


Durch gelöste Stoffe ändert sich die kritische Temperatur des Wassers, für geologisch relevante Systeme liegt T_k etwa zwischen 300 und 400°C.

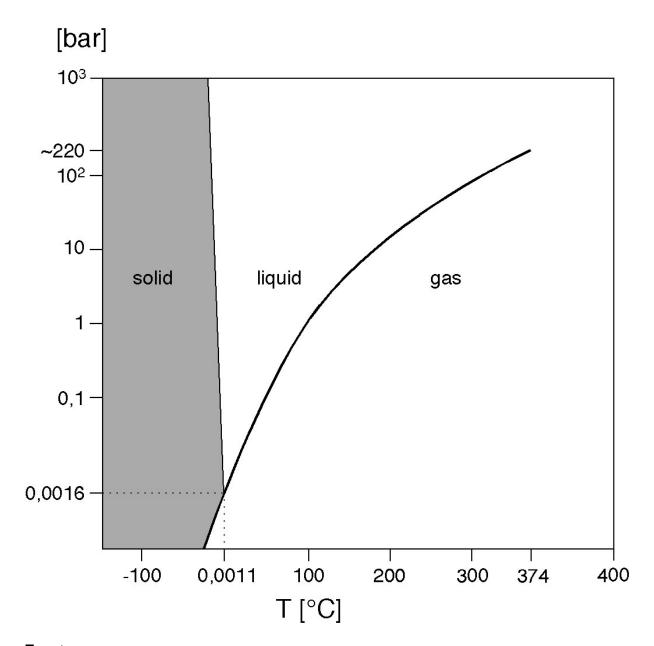
Wasser im überkritischen Zustand wirkt ab ca. 500°C oxidierend.

Das begrenzt den Einsatz von Dampf in Dampfturbinen auf Temperaturen im unterkritischen Bereich, deshalb können auf diese Weise keine Wirkungsgrade

(Elektrische Energie/Thermische Energie) von mehr als 40% erzielt werden. – Bei etwa 800°C reagiert Wasser mit Zirkoniumlegierungen zu Wasserstoff und ZrO_2 , dies trat z.B. bei den Reaktorunfällen in Tschernobyl und Fukushima ein \rightarrow Knallgasexplosionen. - Ab etwa 1800°C wird Wasser rein thermisch in Wasserstoff und Sauerstoff gespalten. Ma kann daher brennenden Graphit nicht mit Wasser löschen.

Hohe Strahlungsenergien erzeugen in Wasser auch bei Normaltemperatur OH-Radikale, bzw. H_2O_2 . So erzeugen α -Strahlen in luftgesättigtem Wasser HNO_3 . – Das UV des Sonnenlichts erzeugt an bestimmten Festkörperoberflächen ebenfalls geringe Mengen von OH-Radikalen. Besonders wirksam ist Anatas. Das Verfahren erscheint geeignet um Trinkwasser von extrem geringen Mengen von Pestiziden zu reinigen, die durch die Landwirtschaft eingetragen werden.

Einstoffsystem Wasser


Die Schmelzdruckkurve ist nach links geneigt, da bei Oberflächenbedingungen die feste Modifikation Eis I ein größeres Volumen besitzt als die koexistierende flüssige Phase.

539 cal/g beträgt die Verdampfungswärme von Wasser

Die eingezeichneten %-Kurven zeigen die relative Luftfeuchte von Luft, die sich im Gleichgewicht befindet mit flüssigem Wasser der entsprechenden Temperatur. Die rechte Ordinatenskala zeigt die entsprechende absolute Luftfeuchte.

Die zweite Graphik zeigt das Ende der Dampfdruckkurve am kritischen Punkt.

Methoden zur Bestimmung der Luftfeuchte: Taupunktbestimmung – Aspirationspsychrometer (Schleuder – doppel-Thermometer, nass+ trocken) Haarhygrometer

Frostsprengung

- Alle Poren mit Wasser gefüllt, kryostatischer Druck! Nicht in Wüsten! (Volumenzunahme von etwa 10% beim Gefrieren. Bei –1° C = 130 bar) Typisch in der Tundra In Frostbodenzonen (Gelosol) sog. Kryoturbation : Netze eisgefüllter Spalten mit Maschenweiten von 0,4 10 m, Aufwölbung im Zentrum, Steinringböden.
- Poren nur zum Teil mit Wasser gefüllt, Oberfläche am kältesten,
 Wasserdampf kondensiert zu Eis an der kältesten Stelle,⇒ Kristallisationsdruck
 Bei z.B. –5° C etwa 1,3 bar.

Eislinsen- und Kammeisbildung, Frostaufbrüche, Solifluktionserscheinungen an Hängen.

Typische Bildungen im humiden u. borealen Klima. –

Strassenschäden/Frostaufbrüche

(Von Bedeutung auch in hohen Lagen der Atacama und in der Gobi.)

In der Dauerfrostzone in Hochgebirgen wirkt Eis in Spalten und Klüften dagegen stabilisierend – Die Verwitterung wird verzögert!

Gletscher rutschen langsam zu Tal und erreichen dabei Geschwindigkeiten von einigen m pro Tag. Als Folge wird das Tal breiter und tiefer \rightarrow U-Täler.

Ursache der Bewegung: Die Basisfläche (0001) des Eisgitters ist eine Translationsebene. (Zusätzlich Schmelzpunkterniedrigung durch Druck)

Salzsprengung: Kristallisationsdruck von Salzen (NaCl, Gips, Mg + Na-Sulfat)

Herkunft der Salze:

Aus chem. Verwitterung: Na, Ca, Mg, K, Al, eventuell SO₄ aus Pyritverwitterung, Karbonat aus Kohlendioxid der Luft. Wegen CaSO₄ 2 H₂O + Na₂CO₃ ⇒ CaCO₃ + Na₂SO₄ + 2H₂O kommt nie Soda neben Gips vor!! (Gipsdüngung von alkalischen Böden)

Aus der Atmosphäre: Regenwasser enthält CaSO₄ + NaCl, je ca. 2 bis 3 ppm. Anreicherung nur wenn Verdunstung den Niederschlag überwiegt! (Arides Klima, Brückenunterseiten oder Überhänge)

In Küstennähe Transport von NaCl durch Nebel und Gischt. / HCl +SO₂ ⇒ Vulkane

Biogene Herkunft: Der Harn von Säugetieren enthält NaCl. / Angewehte Asche

Glaubersalz (Natriumsulfat-10-Hydrat) schmilzt bei 32°C im eigenen Kristallwasser. Diese Umwandlungstemperatur wird durch andere Salze um ca. 3°C pro Mol/L erniedrigt - Dadurch in Wüsten und regengeschützten Überhängen häufige Wechsel! - Quervain-test

Tafoni-Verwitterung: Bildung von Löchern

Wichtige Art der physikalischen Verwitterung in Wüsten und an Bauten. Steile Wände, Löcher und Überhänge haben guasi Wüstenklima!

Salzverwitterung von Bauten:

- Soda als Zementzuschlag reagiert mit Gips aus Putz zu Kalk + Natriumsulfat Ettringit $Ca_6Al_2(SO_4)_{10}(OH)_{10}x26H_2O$
- Kalk, bzw. Dolomit reagiert mit Schwefeldioxid der Luft zu Gips, bzw. Magnesiumsulfat
- Salze im Untergrund von Bauten, treten auf bei steigendem Grundwasser.

Salzverwitterung des unteren Bereichs von Mauern im ariden + semiariden Klima kann temporär durch einige cm dicke Lehmschichten verhindert werden: Wichtig für archäologische Ausgrabungen und Baudenkmäler, nur die Lehmschicht unterliegt der Salzverwitterung und muss meist 1x pro Jahr abgeklopft und erneuert werden.

Schwerkraft + Wasser→ **Erosion**

Transport durch Wasserläufe, Schichtfluten, bzw. (periodisch fließende) Flüsse, durch Gletscher, durch Brandung.

Erdrutsche in durchfeuchteten Böden (nach Niederschlägen von mehr als 200 mm) Bergstürze (Auslöser oft Erdbeben) - Lawinen

Talformen: V-, U-Tal, Cañon, Moränen, Gletscherschliff Bagnould - Sand + 14 – 18 Vol% = Verlust der Scherfestigkeit Quicksand/ Wirbelbett/ Wasserrohrbruchfolgen / Turbidite

Bodenerosion nach Starkregen

Sogenannte "badlands" / Erdpyramiden

Mechanische Wirkung von Organismen:

z.B.:Wurzeln, Bioturbation: Regenwurm, Ameisen, Präriehunde usw., Windbruch - black fungii- Schnecke Echinus esculentus mit Magnetit-xx auf der Zunge - Bohrmuschel Polydora ciliata auf Kalk. - Ringelwurm Glycera branchiata besitzt hohle Giftzähne aus Atacamit

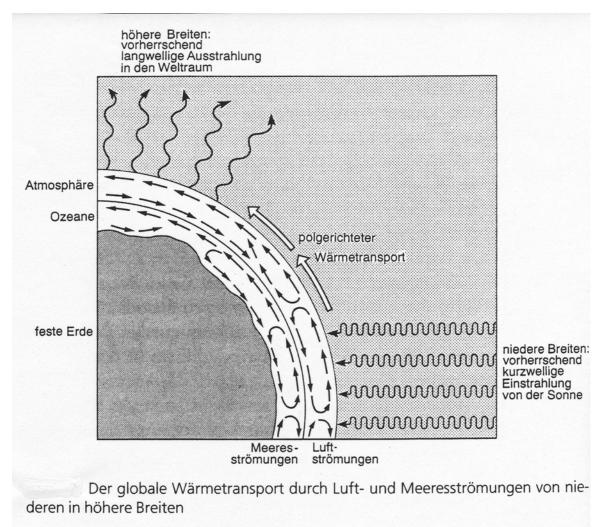
Hemmende Wirkung von dichtem Pflanzenwuchs auf Erosion: Schutzwälder, Urwälder, Tundravegetation, Schilfgürtel, Mangrovenwälder Indirekte Wirkung: Überweidung (Ziegen: black locust) - Savanne-Wald (homo sap../Feuer - Elefant)

Sand: Saltation + Reptation – (Bagnould 1941) **Winderosion**

Der Begriff Verwitterung (weathering) bereits zeigt den Einfluss von Wetter auf den Vorgang

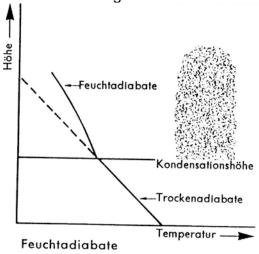
Wetter + Klimazonen

Astronomische Grundlagen – Erdbahn um die Sonne ist annähernd ein Kreis. Erdachse bildet einen Winkel von 23,5° mit der Ebene der Erdbahn. (Schiefe der Ekliptik = 23,5°) Ursache für Jahreszeiten Wendekreise (tropic of cancer/ tropic of capricorne)


Energiebilanz der Erde = Einstrahlung minus Ausstrahlung

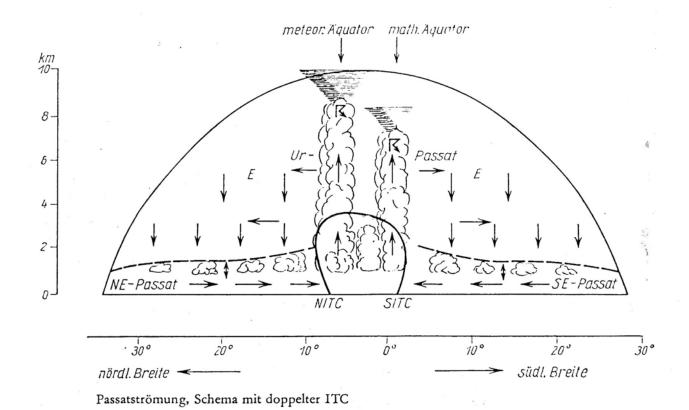
Bis 30° Breite positiv / Ab ca. 60° Breite negativ /dazwischen abhängig von Jahreszeit

Wärmetransport durch:


- Strahlung (mit Lichtgeschwindigkeit)
- Konvektion (km/h)
- Leitfähigkeit (extrem langsam)

Ausgleich daher durch Strömungen der Wasserhülle(1/3) und der Atmosphäre (2/3)

<u>Corioliskraft</u>: Umfangsgeschwindigkeit am Äquator = 1667 km/h, am Pol = 0 Erhaltung des Impulses - Ablenkung von zum Pol gerichteten Strömungen nach E, von zum Äquator gerichteten Strömungen nach W. Ergebnis: Ablenkung auf Nordhalbkugel nach rechts(Uhrzeigersinn), auf der Südhalbkugel nach links (entgegen Uhrzeigersinn).


<u>Aufbau der Atmosphäre</u>: Bis ca. 10 - 12 km Troposphäre, enthält die Hauptmasse der Lufthülle und vor allem fast alles Wasser der Lufthülle. Luftdruck fällt bis etwa 1/5 bar. Höhe der Tropopause ist in verschiedenen Breiten verschieden: Frontalzone Heisse Luft steigt auf

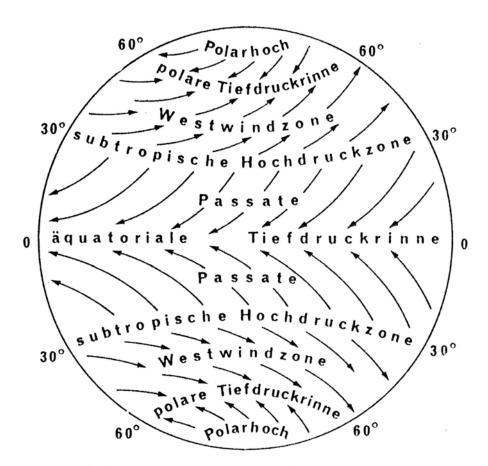
Adiabatischer Vorgang (Ohne Wärmeaustausch mit der Umgebung)

Adiabatische Kompression erzeugt Wärme (Luftpumpe), umgekehrt bewirkt die Ausdehnung eine Abkühlung. (Trocken: 1°C pro 100 m / Feucht: ca. o,6°C pro 100 m wegen Kondensationswärme) Trocken- u. Feuchtadiabate

In Äquatornähe steigt warme Luft plus Wasserdampf auf - Wasser kondensiert + regnet ab, warme Luftmassen strömen Richtung Pol ab - **ITC = Innertropische Konvergenz** = polwärts die Grenze der aufsteigenden Warmluft, deren Luftfeuchtigkeit kondensiert und abregnet.

Hadleyzelle (1735): Die aufsteigende Luft kann nur bis zur Grenze der Tropopause (ca. 12 km) gelangen, muss dann polwärts ausweichen - sogenannter Urpassat (anti trade) - absteigende Luftmassen, werden durch adiabatische Kompression wärmer - ab ca 30° bodennahe Strömung bis in ca. 3 km Höhe wieder in Richtung Äquator, durch Coriolisablenkung auf Nordhalbkugel NE-Passat, auf Südhalbkugel SE-Passat. = Hadleyzelle / Innerhalb der Hadleyzelle kein Niederschlag!

Grenzt polwärts an Westwindzone = Hoch- + Tief-Druckzellen wandern vorwiegend ostwärts.


ITC und die Grenze Hadleyzelle/Westwindzone verschieben sich mit den Jahreszeiten, dadurch regelmäßige Niederschläge am Südrand, bzw. Nordrand von Wendekreiswüsten.

Passat (trade wind) = Polwärts abströmende trockene Winde, oben = Urpassat, dann absteigend, dabei Erwärmung durch adiabatische Kompression. Dabei Ablenkung aus der Richtung zum Pol durch die Corioliskraft, in Bodennähe wieder

Richtung zum Äquator, aber erneut Ablenkung durch Corioliskraft: NE-Passat auf der Nordhälfte, SE-Passat auf S-Kugel.

Passatinversion: Höhengrenze zwischen Passat und absteigendem Urpassat.(1,5-3 km)

Ergebnis: In einem Gürtel zwischen ITC und polseitiger Grenze der Passatwinde regnet es wenig, da dort absteigende Luftströmungen vorherrschen (Adiabatische Erwärmung)

Schema des planetarischen Luftdruckund Windsystems in den bodennahen Luftschichten

Die Ideale Strömungsverteilung in Bodennähe wird gestört durch:

- Ungleiche Verteilung von Land und Meer
- jahreszeitliche Schwankung der Einstrahlung (Winter-Sommer durch Schiefe der Ekliptik)
- hohe Gebirge.(Höhe relativ zur Höhe der Tropopause)
- Kalte Meeresströmungen

Klimadefinition nach Wladimir Köppen (1923):

A-Klima ist tropisches Feuchtklima ohne kühle Jahreszeit, keine Monatsmitteltemperatur unter 18°C.

B-Klima sind alle Trockenklimate

C-Klima (Humides Klima) Feuchtklima mit kühler Jahreszeit, kältester Monat mit Monatsmitteltemperatur zwischen 18°C und -3°C..

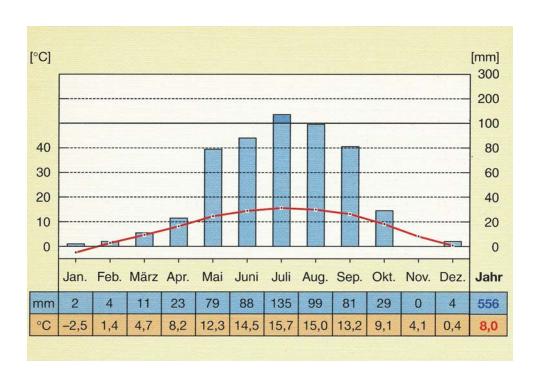
D-Klima (Boreales Klima) Monatsmittel des wärmsten Monats über 10°C, des kältesten unter -3°C.

E-Klima Wärmster Monat unter +10°C.

.....

<u>Trockenmonat:</u> Monatlicher Niederschlag in mm ist kleiner als die halbe mittlere Monatstemperatur.

6-11 Monate Trockenzeit = Arid (Steppe)


Alle 12 Monate Trockenzeit = Wüste (desert zone)

Einteilung in zwei aride B-Klimate:

BS ist semiarides Steppenklima (Lockerer Bewuchs mit Gräsern, Kräutern und Strauchwerk)

BW ist vollarides Wüstenklima (Nur gelegentlich Pflanzen)

weitere Unterteilung in heiße und kalte Untertypen (Jahresmitteltemperatur grösser oder kleiner 18°C)

Klimadiagramme (ombrothermic diagram): X-Achse sind die 12 Monate, Y-Achse sind links die Monatsmitteltemperatur in °C und rechts der Monatsniederschag in mm, dabei entsprechen im Maßstab 1°C gleich 2 mm Niederschlag. Die Niederschläge werden meist als Balken aufgetragen, die Monatsmitteltemperaturen werden zu einer Linie verbunden

Thermodynamik

Naturwissenschaftliche Untersuchung der Zusammenhänge zwischen der Masse und verschiedenen Formen von Energie, insbesondere bei Änderungen von Temperatur, Druck, Volumen, bei Phasenübergängen und bei chemischen Reaktionen. - Entwickelt im Wesentlichen im 19ten Jahrhundert.

Grundlage sind die drei "Hauptsätze" der Thermodynamik:

Erster Hauptsatz: (Julius Robert Mayer 1842)

Erhaltung von Energie und Masse, bei gegenseitiger Umwandlung gilt nach Einstein $e = m c^2$ (Nur bei subatomaren Prozessen)

Andere Formulierung: Bei einem Vorgang ist die Summe aller Energien im System konstant.

Andere Formulierung: Unmöglichkeit des Perpetuum mobile 1ter Art:

Es ist nicht möglich eine Maschine zu konstruieren, die Energie aus dem Nichts erzeugt.

Zweiter Hauptsatz: Clusius / Gibbs

.

Unmöglichkeit des Perpetuum mobile 2ter Art:

Es ist unmöglich eine Maschine zu konstruieren, die nichts weiter bewirkt als die Abkühlung eines Wärmebehälters und die Hebung einer Last.

Andere Formulierung: Es ist unmöglich in einem makroskopischen System kontinuierlich Wärmeenergie zu 100% in eine andere Energieform überzuführen.

Dritter Hauptsatz: Nernst

Unmöglichkeit der Erreichung des absoluten Nullpunkts.

Schwäbische Formulierung:

"Aus nix wird nix" (1. Hauptsatz)

"Man bekommt maximal so viel heraus, wie man hereinsteckt, und das auch nur am absoluten Nullpunkt" (2. Hauptsatz)

"Und der ist unerreichbar" (3. Hauptsatz)

Auf dieser Grundlage baut die chemische Thermodynamik anhand von vielfältigen Messergebnissen und logischen Erwägungen eine formelmässige Systematik auf,

die es u.a. gestattet zu berechnen ob unter bestimmten Verhältnissen (Druck, Temperatur, Konzentrationen) eine chemische Reaktion ablaufen kann. (Ca. 50% der Physikalischen Chemie)

Wichtigste Formeln: <u>Gasgesetz:</u> p v = n R T

<u>Gibbs`sches Phasengesetz:</u> Die Zahl der Phasen plus die Zahl der Freiheiten ist gleich der Zahl der Komponenten plus 2. P + F = Ko + 2

<u>Massenwirkungsgesetz:</u> Das Produkt der Konzentrationen der rechten Seite einer chemischen Reaktionsgleichung, geteilt durch das Produkt der Konzentrationen der linken Seite ist bei konstanter Temperatur konstant = <u>Gleichgewichtskonstante</u>. Die in der Reaktionsgleichung erscheinenden stöchiometrischen Faktoren erscheinen dabei als Exponenten der Konzentrationen. <u>Reine</u> feste Stoffe bleiben dabei unberücksichtigt.

Die Temperaturabhängigkeit der Gleichgewichtskonstante und damit die Lage des chemischen Gleichgewichts lassen sich berechnen, wenn genügend Daten über das betreffende System bekannt sind. Zu diesen Daten zählen die spezifischen Wärmen aller beteiligten Phasen, deren Temperaturabhängigkeit und alle relevanten Reaktionswärmetönungen. (Molare Entropien und Bildungsenthalphien)

Reaktionsenthalpie H = Wärmetönung einer Reaktion

Enthalpie S = Aufgenommne Wärme dividiert durch die Temperatur bei der dies geschieht (Summe der aufgenommenen Wärme zwischen absolutem Nullpunkt und der betrachteten Temperatur, also auch die spezifischen Wärmen, Wärmetönung von Phasenumwandlungen und chemischen Reaktionen)

Freie Reaktionsenthalpie = Gibbs'sche Energie : G = H -TS

 $\Delta G = \Delta H - T \Delta S$

Nur Reaktionen bei den ΔG negativ ist laufen freiwillig ab!!

Für geologisch wichtige Fragestellungen können heute vielfach Computerprogramme zur Berechnung des chemischen Gleichgewichts benutzt werden. Die notwendigen thermischen Daten sind im Programm enthalten, teils gemessen, teils inter- oder extrapoliert, teils geschätzt.

Die Berechnung sagt Ihnen, wo das chemische Gleichgewicht liegt, d.h. **ob eine Reaktion ablaufen kann oder nicht.** Damit ist aber keineswegs sicher, dass das Gleichgewicht sich auch tatsächlich einstellt \Rightarrow

In allen benutzten Formeln kommt eine Dimension nicht vor: Die Zeit!!

Mit der Zeitabhängigkeit von chemischen Reaktionen beschäftigt sich die Kinetik.

Als eine allgemeine Erfahrungstatsache gilt: Das Gleichgewicht stellt sich schneller bei höheren Temperaturen ein.

Wir leben auf der Erdkruste, die nur ca. 0,4 % der Masse der Erde ausmacht.

Für uns zugänglich ist nur die Oberfläche der Kontinente und des Schelfbereichs, etwa 0,01 % der Masse der Erde.

Fast 99% dieser Masse wird von nur 8 Elementen gebildet.

Magmatische Gesteine bestehen ganz überwiegend aus den folgenden Mineralen:

Feldspäte, Quarz, Pyroxene, Amphibole, Glimmer, Olivin

Alle Silikate können als dichte Packungen von Sauerst0ff-Ionen, bzw. OH-Ionen aufgefasst werden. (Ionenradius = ca. 1,4 Ă)
Die Kationen sitzen in der "Löchern" dieser Packung →

- [4] Tetraederlücken 3 + 4-wertige Kationen 0,5 0,25 Å
- [6] Oktaederlücken 2,3,4-wertige Kationen 0,5 0,9 Å
- [8] Würfellücken 1 und 2-wertige Kationen 1 1,26 Å
- [12] Kuboktaeder-Lücke 1+2-wertige Kationen 1,0 1,5 Å

Die magmatischen Hauptminerale haben alle [4]-Lücken, besetzt mit Si, Al, B.

Pyroxene + Amphibole haben zusätzlich 6er + 8er Lücken.

Glimmer haben zusätzlich zu 4er auch 6er und 12er Lücken

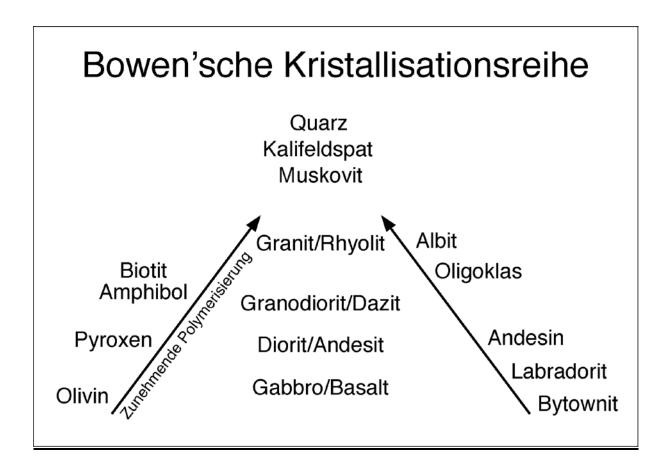
Feldspäte haben auch [10]- Lücken.

Die Kationen der häufigsten Elemente Si, Al, Fe, Mg, Ca, Na und K passen in die "Lücken" der magmatischen Hauptminerale. Andere Kationen werden eingebaut falls Ionengröße und Ladung passen. Dabei ist ein Ladungsausgleich möglich durch Leerstellen oder gekoppelten Ersatz.

Einige Kationen bilden eigene Minerale während der Hauptkristallisation die dann als akzessorische Minerale auftreten. z.B. :Zirkon ZrSiO₄ / Monazit CePO₄ / Xenotim YPO₄ / Rutil TiO₂.

Kationen mit zu kleinem oder zu großem Ionenradius, bzw. zu hoher Ladung sammeln sich bei der magmatischen Kristallisation in der Restschmelze an und bilden in der Restkristallisation eigene Minerale: (Greisen – Pegmatite – hydrothermale Gänge)

Beispiele: Li, Be, B, Cs, Ba, Nb, Ta, Sn, Bi, U.


In Pegmatiten und hydrothermalen Gängen finden sich auch viele Elemente, die aufgrund ihrer chemischen Affinität bevorzugt an S, bzw., As binden. (Pb, Zn, Cu, Sb,Se, Te, Ag, Hg, Ga, In, Tl, Cd, Co, Ni, Au.) Einige dieser Elemente saßen wahrscheinlich ursprünglich in Pyroxen, durch Reaktion mit heißem Seewasser ausgelaugt bildeten sich black smoker.

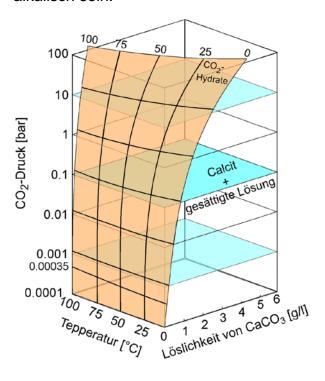
Bei der Verwitterung entstehende wasserlösliche Minerale als Rohstoffquelle . Salzseen mit Li oder Bor-Gehalten – Evaporite (Salzstöcke) liefern NaCl, K-Salze, MgCl₂, Brom..

Chemische Verwitterung nur wenn Wasser vorhanden!

<u>Historische Entwicklung</u>: Die unterschiedliche Verwitterungsgeschwindigkeit von Gesteinen war natürlich lange bekannt und wurde von Geologen im 19. Jahrhundert beobachtet und beschrieben. Es fehlten aber eine Reihenfolge der Verwitterung für die häufigsten gesteinsbildenden Minerale, bzw. eine Angabe in Masse pro Zeit und Fläche für einzelne Minerale.

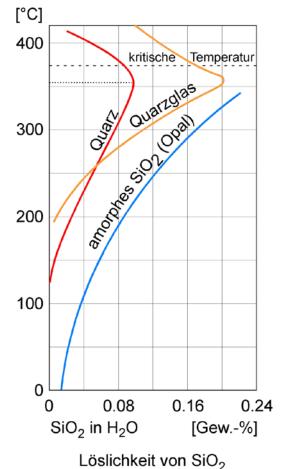
1938 publizierte Goldich eine solche qualitative Abfolge (Goldich'sche Reihe) Sie basierte auf Untersuchungen der Sedimentreste verschiedener Plutonite und entsprach exakt der umgekehrten Bowen'schen Reihe (Abfolge der Kristallisation von magmatischen Gesteinen). Erste experimentelle Arbeiten durch Correns & von Engelhardt 1939 an der Universität Greifswald. Ab Ende der 60er Jahre viele experimentelle Arbeiten, vorwiegend in USA, Kanada und Schweden.

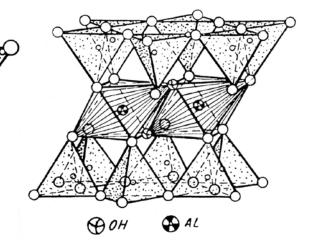
<u>Karbonate</u>: Bildung von Calciumhydrogencarbonat: **Karst**, Dolinen, Stalaktiten, Taurillen. - (Kohlendioxidgehalt der Atmosphäre ca. 360 ppm) In luftgesättigtem Wasser ist Kalk 4x so löslich wie in reinem Wasser. Extreme Steigerung der Löslichkeit bei höheren Kohlendioxid-Drucken! - Zeitlich begrenzte Bindung von CO₂, wird bei Ausfällung des Calcits wieder frei. - **Reversibler Prozess**

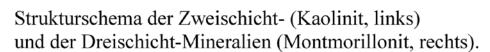

Silikate + Oxide ⇒ Auflösung in Wasser, meist sofort Bildung neuer, thermodynamisch beständiger Minerale - Irreversibler Prozess
Hängt ab von pH und Konzentrationen der gelösten Stoffe, also von Wassermenge

und ev. vorhandenen Säuren (CO₂ + org. Säuren) + Chelatbildnern

Durch Silikatverwitterung freiwerdendes Calcium bindet Kohlendioxid langfristig!

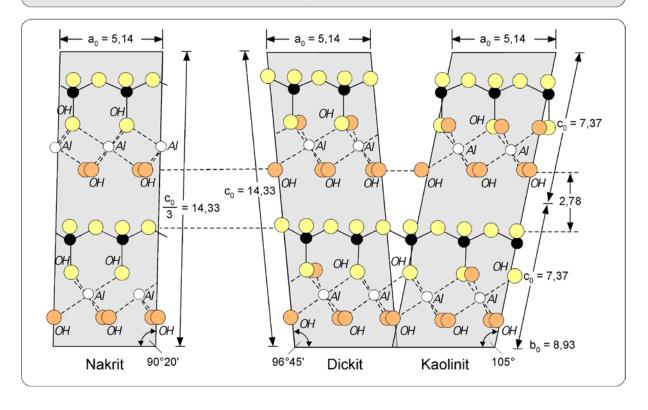

Luftgesättigtes Regenwasser hat pH von ca. 5,5 bis 6 / Sog. "saurer Regen" durch Schwefeldioxid aus Verbrennungsabgasen, kann auch lokal durch Exhalationen von Vulkanen verursacht werden: pH-Werte von etwa 4, in Extremfällen bis 2.

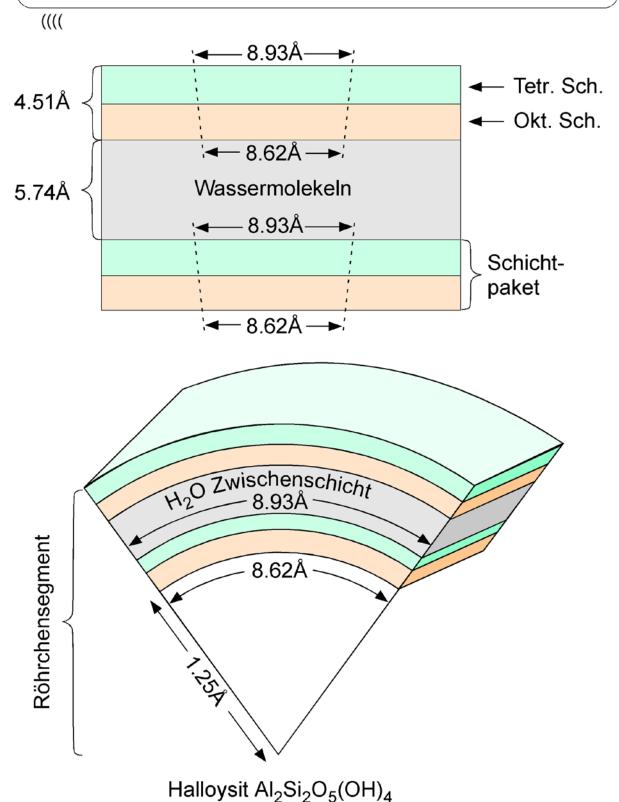

Bodenwasser meist neutral, Porenwasser in silikatischen Gesteinen kann auch alkalisch sein.



Löslichkeit von CaCO₃ in Wasser in Abhängigkeit von CO₂, Druck und Temperatur (z.T. nach Faust 1949, Miller 1952).

00




o si

Projektion der Strukturen von Nakrit, Dickit und Kaolinit in Richtung der b-Achse.

Schematische Darstellung der Anordnung der Schichtpakete beim Halloysit

(nach Hendricks²²⁸ und Bates³¹).

Typische Neubildungen: Schichtsilikate (Tonminerale), FeOOH, Hämatit, Gibbsit

bei höherem pH und hoher Konzentration von Alk.+ Erdalk.-lonen = **Dreischichtminerale**:

Illit wenn überwiegend AI + K vorhanden, mit Mg Smectite, - mit AI+Mg = Montmorillonit - mit Mg + Fe(II) manchmal auch Chlorit, – Viele Dreischicht-Tonminerale sind Ionenaustauscher! (Humid bis Arid)

bei niedrigem pH und allgemein niedrigen Konzentrationen = Zweischichtminerale

Kaolinit, Halloysit, (Allophane, Imogolit = rö.amorphe Tonminerale) (Humid bis Tropisch)

bei extrem niedriger Kieselsäurekonz. (kleiner 1 ppm) = Gibbsit + Hämatit (Tropisch)

Natürlich stets auch abhängig vom Ausgangsgestein!! Eventuell durch Klimawechsel überprägt.

Was wird aus den bei der Verwitterung freigesetzten Elementen?

Fe ³⁺ ⇒ FeOOH, überwiegend als Goethit, seltener Lepidokrokit, nur bei extrem schneller Bildung durch Oxidation von 2-wertigem Fe als Ferrihydrit.

Bei höherer Bodentemperatur entsteht Hämatit ⇒ Roterde. Aus dem Verhältnis Goethit/Hämatit kann auf die Bodentemperatur geschlossen werden./ Der Anteil an organisch gebundenem Fe(II) kann in Böden bis zu 50% des Gesamt-Fe erreichen.

Geringe Mengen Fe in Schichtsilikaten: Glaukonit, Chlorit, Hisingerit, Nontronit, Chamosit, Thuringit, Greenalith (teils halmyrolitisch gebildet)

- Mn ⇒ unter aeroben Bedingungen Oxide, bzw. Hydroxide des 3, bzw. 4 wertigen Mn.
- Al³⁺ ⇒ Tonminerale; wenn viel Wasser da ist auch Al(OH)₃ oder AlOOH (amorphe Ton-Minerale: Imogolite, Allophan)
- Si ⇒ teils Tonminerale, Überschuß kolloidal abtransportiert, Bildung von flint (Feuerstein), bzw. Chalcedon, sedimentär gebildeter Quarz, sehr selten Opal.
- Ti ⇒ Anatas ist eine Neubildung, Rutil entstammt dem Ursprungsgestein, Leukoxen ist ein weissliches Umwandlungsprodukt von Ilmenit. bzw. Titanomagnetit

Mg (Fe²⁺) zusammen mit Al \Rightarrow Tonminerale

Ca, Na, K ⇒ teils in Tonmineralen als austauschbare Ionen (K bevorzugt gebunden, bedeutend für Pflanzenwuchs), Überschuß als Hydroxid ⇒ + CO₂ ⇒ Calcit, bzw. Hydrogencarbonat abgeführt. Ca aus Silikatverwitterung bindet CO₂ dauerhaft!

Boden (soil):

Zusammensetzung unterschiedlich je nach Herkunftsgestein - Im Sand- und Silt-Anteil überwiegt oft Quarz, Alkalifeldspat u. etwas Hellglimmer, im Tonanteil Tonminerale u. Fe-Oxide. Zuweilen Calcit, bzw. Dolomit. (Seltene Mineralneubildung in Böden ist Hydrogrossular, hier ist der SiO₄-Tetraeder ganz oder teilweise durch vier H₃O+ersetzt.)

Organische Substanz (Humus) in mitteleuropäischen Böden meist zwischen 1 und 30% - In Moorböden teils sehr viel höher. Im humiden Klima geht ein Teil der organischen Substanz durch mikrobiellen Abbau vorwiegend von Zellulose und Lignin in Huminstoffe über. Dies sind hochmolekulare verknüpfte aromatische Ringe mit funktionellen Gruppen, vor allem OH und COOH-Gruppen. Deshalb Säurecharakter, also Kationenaustauscher, zusätzlich können Metalle als Komplexe (Chelate) gebunden werden. Huminstoffe meist dunkel gefärbt.

In vielen tropischen Böden vorwiegend Kaolinit mit extrem geringer Austauschkapazität und wenig Huminstoffe! - <u>Folgerungen für Ackerbau</u>: Nur im ersten Jahr nach Brandrodung gute Ernte! War bereits bekannt bei Naturvölkern mit Steinzeitkulturen in tropischen Gegenden!! - Bodenverbesserung möglich durch Unterarbeiten von Holzkohle + Asche + Fäkalien + Knochenasche im Gartenfeldbau. (Indios im Amazonasgebiet)

Wüstentypisch:

Palygorskit, Sepiolit (hoher pH, viel Mg-Ionen) - Evaporitminerale: Salze, Gips.

Kieselsäurepanzer - Krusten auf Sandsteinen - verkieseltes Holz sind wahrscheinlich Relikte niederschlagsreicherer Zeiten bei gleicher geograph. Lage (Würzburger Schule-Hagedorn)

Wüstenlack - Polituren durch Staub + Sandschliff Eher 3 Schicht-Tonminerale als 2-Schicht-Tonminerale

Weitere Verwitterungsminerale

Crandallit - Goyazit - Gruppe

Sehr stabile, schwerlösliche und teils säureresistente Minerale mit trigonaler Struktur. Treten als Verwitterungsprodukte vorwiegend von Karbonatiten auf.- Isotyp mit Jarosit.

Crandallit CaHAl₃ [(OH)₆ / (PO₄)₂] theoretisches Endglied, rein nicht existent

Goyazit SrHAl₃ [$(OH)_6 / (PO_4)_2$]

Florencit CeAl₃ [$(OH)_6 / (PO_4)_2$]

In das Gitter werden auch eingebaut U, Th, Nb, seltene Erden, Ba, Pb und AsO₄. Reine Arsenate sind selbst in heißen conc. Säuren unlöslich, wurden als Endlagermatrix für radioaktive Abfälle vorgeschlagen.

Bei der Verwitterung von Sulfidmineralen tritt auf

Jarosit KFe₃ [(OH)₆ (SO₄)₂] gelb-braun, fällt aus bei ca. pH 2, nimmt erhebliche

Mengen von Schwermetallen wie Cu, Pb, Zn auf.- Das K kann durch H₃O, Na und NH₄ ersetzt werden.

Alunit ist die entsprechende Al-Verbindung. Bei den Mineralen der Beudantit-Gruppe ist im Anion Sulfat + (Phosphat oder Arsenat) vertreten. Typisch in der Oxydationszone von Erzen.

Verwittert bei Wasserzufuhr langsam weiter zu Limonit+Hämatit⇒ Eiserner Hut (gossan).

Phosphat wird von allen Organismen benötigt: ATP = Adenosintriphosphat dient dem Energietransport in der Zelle. Knochen der Wirbeltiere sind aufgebaut aus Hydroxylapatit.

Apatit Ca₅(PO₄)₃(F,Cl,OH,CO₃) ist akzessorischer Bestandteil fast aller plutonischer, vulkanischer und sedimentärer Gesteine. (Meist 0,1 – 1 vol%) – Extrem gering löslich bei pH 5.5 und höher, aber Löslichkeit steigt stark an in Gegenwart von Säuren: Wurzeln scheiden Säuren ab und machen so PO₄ verfügbar für die Pflanze!

Lagerstätten:

<u>Phosphorite</u> sind meist organogene Lagerstätten in Sedimenten.(Hydroxylapatit in Kalken) - <u>Recente Bildungen</u>: Guano (Kot von Seevögeln)

Die Phosphate, bzw. basischen Phosphate fast aller mehrwertigen Kationen sind schwerlöslich, sie finden sich deshalb häufig als Verwitterungsminerale und in Fluss- und See-Schlämmen. Typischer und bekannter Vertreter ist der Pyromorphit. - Methode zur Phosphatentfernung aus Wasser: Fällung als FePO₄, bzw. AlPO₄.

Nachteil: In Industriegegenden sind solche Schlämme oft schwermetallhaltig (z.B. Hafenschlämme)

<u>Abwässer von Kläranlagen</u>: Fällung des P als Struvit MgNH₄PO₄ 6H₂O Das Produkt kann als Dünger benutzt werden, setzt P, N und Mg frei!

Alle primären **Uranminerale** enthalten vierwertiges Uran und sind extrem schwerlöslich:

Uraninit UO_{2 (Pechblende)}, Coffinit USiO₄ und Brannerit (Uran-Titan-Oxid)

Der wesentliche Schritt der Verwitterung dieser primären Uranerze ist die Oxydation, die ist annähernd temperaturunabhängig! - Alphastrahlen bilden mit Wasser

Wasserstoffsuperoxid, dies oxydiert das 4-wertige Uran. - Das dabei gebildete sechswertige Uran liegt als $UO_2^{\ 2^-}$ Ion vor, es bildet mit fast allen Anionen Komplexe, die Karbonato-Komplexe sind leicht löslich! Das Uranyl-Ion ist hantelförmig gebaut, es passt in kein anderes Kristallgitter; deshalb bilden sich eigene Uranyl-Minerale (über 100 Stück bekannt) die sich oft durch grelle Farben auszeichnen, meist gelb. Am häufigsten sind die sogenannten Uranglimmer. Dies sind keine Silikate sondern Phosphate: $UO_2 + PO_4$ bilden zweidimensionale Schichten, dazwischen sitzen Wasser + Kationen.

Sek. Uranminerale, die keine Übergangsmetallkationen enthalten, zeigen UV-Fluoreszenz.

Einige Minerale des sechswertigen Urans werden durch Calciumhydrogencarbonat-Lösungen gelöst, es bilden sich Carbonato-Komplexe mit erheblicher Löslichkeit (bis zu 10⁻² molar !) - Solche Lösungen können unter reduzierenden Bedingungen (Lignit/Sumpf) zu Urananreicherungen führen, da das 6-wertige U zu vierwertigen U reduziert wird.

Primärer Schritt der Verwitterung von Sulfiden ist ebenfalls eine Oxydation. Hier meist Mitwirkung von Bakterien, <u>fast der gesamte Schwefelkreislauf an der Erdoberfläche wird bakteriell bewirkt!</u>

Sekundäres Verwitterungs-Mineral = Gips (Vulkane: $SO_2 + O_2 + Ca$ aus Silikaten, bzw. SO_4 aus Verwitterung von Sulfiden)

In magmatischen + metamorphen Gesteinen, aber auch in vielen Sedimenten herrschen bei der Bildung reduzierende Bedingungen!

Deshalb liegen Elemente mit mehreren Wertigkeiten ganz oder überwiegend in niedrigen Wertigkeiten vor \Rightarrow Fe, Mn, Cr, V, As, Se, Te, U.

Mafische Minerale sind schwarz, weil im Gitter 2- und 3-wertiges Eisen nebeneinander vorkommt!

An der Erdoberfläche bei Verwitterung kann Oxydation eintreten:

z.B. <u>Vanadium</u> ist kein seltenes Element mit 110 ppm in der Kruste. Es wird im magmatischen und metamorphen Bereich als dreiwertiges Ion statt Eisen in Pyroxene, Amphibole, Magnetit und Biotit eingebaut und ist entsprechend fein verteilt, bildet deshalb keine nutzbare Lagerstätten. Bei der Verwitterung wird es zum Ion VO_4 ³⁻ mit fünfwertigem Vanadium oxydiert. Nutzbare Lagerstätten sind z.B. schwerlösliche Salze dieses Ions:

Vanadinit Pb₅Cl(VO₄)₃ oder Descloizit PbZn(OH)VO₄, (Carnotit ist ein Kalium-uranylvanadat / Hauptabbauerz war lange Zeit Patronit VS₄ aus nur einer Lagerstätte in den peruanischen Anden in 5500 m Höhe. Da Patronit zusammen mit organischen Substanzen vorkam, dürfte er durch Reduktion von fünfwertigem V sedimentär entstanden sein

Noch krasser sind die Bedingungen beim <u>Chrom</u> (200ppm), das 3- und 6-wertig auftreten kann. Das Haupterz ist Chromit FeCr₂O₄ als frühmagmatische Ausscheidung, in eisenreichen Mineralen finden sich meist nur Spuren (Olivin,Magnetit). Das Oxydationspotential an der Erdoberfläche reicht nicht aus um

sechswertiges Cr zu bilden. Cr wird nur bei hohen Temperaturen und im alkalischen Milieu bei Gegenwart von Sauerstoff oxydiert. Solche Bedingungen sind im Kreislauf der Gesteine extrem selten \Rightarrow Abbrennen von bituminösen Kalken (mottled zone), nur wenn das gebildete Chromat-Ion anschliessend als schwerlösliches Salz fixiert wird, bleibt das Chromat erhalten \Rightarrow Krokoit PbCrO₄, bzw. BaCrO₄ im Hashemit, einem Mischkristall mit BaSO₄. Entsprechend selten sind Chromate!

As tritt im endogenen Bereich praktisch nur gebunden an Sulfide auf, bei der Oxydation bilden sich Arsenite (III) und Arsenate (V). Fast alle Arsenate mit mehrwertigen Kationen sind schwerlöslich.

Die seltenen Elemente Se + Te finden sich im endogenen Bereich gebunden an Metalle, zusammen mit Sulfiden. An der Oberfläche werden sie schnell zur vierwertigen und sechswertigen Stufe oxydiert und bilden Selenite und Selenate.

Elemente aus der Verwitterung des Gesteins finden sich partiell im

- ⇒ **Boden** = Spurenanalyse im Rahmen von Prospektion meist nicht sinnvoll/ manchmal <u>Indikatorpflanzen</u> (Li, Cu, As, Pb, Al, Ni) Phytomining von Ni - Australische Jarah-Bäume wachsen nur auf Bauxithaltigen Böden.
- ⇒ **Wasser** = Wasseranalysen in catchment-Systemen. (Anreicherungsverfahren)
- ⇒ **Luft**, vorwiegend Luft in Sedimentporen oberhalb des Grundwasserspiegels. Beispiele : Hg / COS (Kohlenoxysulfid) als Indikator von Sulfiderzen

In seltenen Fällen fehlen bestimmte Spurenelemente im Boden, es kommt dabei auch auf die Anbaupflanzen an! Zufuhr durch Düngung kann manchmal Ertrag erheblich steigern. (Insbesondere Mo, Mn, V, Se, Li, Cu)

Mikroorganismen

Bakterien sind Einzeller ohne Zellkern (Prokaryonten, prokaryots) - Je nach Aufbau der Zellhülle unterscheidet man gram-positive und gram-negative Bakterien, Unterscheidung durch Färbbarkeit.

Bakterien, aber auch alle anderen Lebewesen, können als chemische Fabriken aufgefasst werden, die Rohstoffe und eine Energiequelle benötigen und die etwas produzieren, nämlich Duplikate von sich selbst und die dabei Abfälle ausscheiden. - Als Energiequelle wird ein Elektronentransfer benutzt: Ein Elektronendonator gibt Elektronen ab, die von einem Elektronenakzeptor aufgenommen werden. Als Rohstoffe werden benutzt: Organische Substanzen oder CO_2 + Wasser, sowie viele anorganische Substanzen: K, Na, Ca, Mg, Fe, PO_4^{3-} , SO_4^{2-} , Cl⁻, Sulfide, stickstoffhaltige Substanzen u. a.

<u>Heterotrophic microorganism (chemo-organothrophs)</u>:

Donator ist eine organische Substanz, Akzeptor ist entweder Sauerstoff (aerob) oder

NO₃-, SO₄²-, Fe³⁺, Mn⁴⁺, organische Substanz (anaerob)

Chemolithotrophs or autotrophic bacteria:

Donator: Fe²⁺, S²⁻, S°, NH₄+, Mn²⁺ u. a., Akzeptor ist CO₂

Cyanobacteria (blue-green algae), photobionts:

Donator: hυ (Photonen), Akzeptor: CO₂

Eine besondere Gruppe bilden die <u>Archebakterien</u> mit den Gruppen: methanogens - extreme halophiles - thermoacidophiles

Einige Bakterien sind in der Lage Luftstickstoff in organisch gebundenen Stickstoff umzuwandeln. (Teils in Symbiose mit Pflanzen)

Eukaryonten (eucaryots) haben einen Zellkern, es gibt hier Einzeller wie Protozoen (Amöben) und Grünalgen, aber auch Mehrzeller wie Pilze (fungi), Flechten (lichen) als Symbiose zwischen Pilz und Algen, und schliesslich Pflanzen und Tiere. - Symbiosen zwischen Mehrzellern und Bakterien sind extrem häufig, aber auch die meisten Bakterien leben im Prinzip symbiotisch! - Bakterien sind in der Lage Erbinformationen untereinander auszutauschen!

In den 90er Jahren wurde ein gram-negatives Bakterium (Shewanella oneidensis) entdeckt, das diese Fähigkeit offenbar extensiv ausgenutzt hat. Normalerweise nutzt es Sauerstoff um organische Substanzen abzubauen; gerät es in ein anaerobes Milieu so ist es in der Lage alternative terminale Elektron-akzeptoren zu nutzen, z.B. Mn(III) , Mn(IV), Fe(III), Cr(VI), U(VI), Nitrat; u.a. wird Sulfit, Thiosulfat und elementarer Schwefel zu H₂S reduziert. Wegen der möglichen Benutzung bei der Behandlung von Abfällen wurde 2002 die komplette Genomsequenz des Bakteriums bestimmt.

Die Rolle von Mikroorganismen bei der Gesteins- und Baustoffverwitterung wird erst seit etwa 40 Jahren erforscht. Sie besiedeln praktisch alle Hohlräume und Klüfte bis zu erheblichen Tiefen. - Direkt an der Erdoberfläche in Böden, in Lockersedimenten und im Ozean finden sich im Mittel etwa 1 Million Bakterien pro Kubikzentimeter!! Die Zahlen für andere Mikroorganismen, wie Pilze (fungii), Protozoen und Algen liegen um ca. 2 bis 4 Grössenordnungen niedriger.

Weniger als 10% der Bodenbakterien und nur ca. 0,1% der marinen Bakterien konnten bisher auf Nährboden kultiviert werden! - Pilze und Flechten (Symbiose zwischen Pilz and Algen) bewirken teils eine physikalische Verwitterung durch Wachstum in das Gestein mit Raten von 0,1 bis 0,01 mm/a, andererseits scheiden sie Stoffe aus die den lokalen pH-Wert erhöhen (Säuren) und/oder komplexierend wirken. (Polysaccharide, Oxysäuren) - Zu den von Bakterien ausgeschiedenen Säuren zählen: Oxalsäure, Fumar- + Maleinsäure, Zitronensäure, Glucon- und Milchsäure, sowie Kohlendioxid.

Einige Species produzieren starke Säuren wie Schwefel- und Salpetersäure und können eine rasche Verwitterung von Calcit-haltigen Gesteinen und Beton im anaeroben Bereich bewirken. Die bakteriell bedingte Oxydation von Eisen in Sauerstoff-freien Lösungen ist belegt.- FeS, Pyrit und Markasit werden biogen im sedimentären Bereich gebildet, bzw. bei Änderung der pH-Werte und des

Sauerstoffangebots wieder abgebaut. Kleine Pyrit-"Schornsteine" im Schwarzen Meer.

(Praktische Bedeutung: Pyrit/Markasit im Abraum von Braunkohlentagebauten. Bei der Rekultivierung und Flutung \Rightarrow Fe-Hydroxide + Schwefelsäure , saure Reaktion des Wassers.

Zwei Möglichkeiten der Abhilfe: 1. + Kalk 2. + Org. Stoffe, dadurch reduzierendes Milieu im tiefen See-Bereich, Neubildung von Pyrit unter biologischer Reduzierung von Sulfat und dreiwertigem Eisen.)

- Einige Autoren sind der Ansicht, dass die Bildung von Mn-, bzw. Eisenoxid-Krusten im ariden Klima durch Mikroorganismen verursacht werden.

Biodeterioration

Helle Gebäude und Monumente werden im Laufe der Zeit langsam dunkel. Bis etwa 1970 hielt man das für Ablagerungen von Russ und Staub. Die genaue mikroskopische Untersuchung zeigte aber ganz vorwiegend das langsame Wachstum von schwarzen Pilzen. Manchmal treten auch Algen, bzw. Flechten (lichen) auf. – Kann für einige Jahre verzögert werden: Behandlung von Calcit (Marmor) mit extrem verdünnten Lösungen, die AgF(0,002M) und CuSiF₆ (0,006M) enthalten.

- Auf freistehenden Gesteinen bildet sich oft eine Kruste aus. Sie enthält neben Verwitterungsmineralen auch Mikroorganismen und deren Auscheidungsprodukte,
- z. B. Ca-Oxalat. Es ist umstritten, ob solche Verwitterungskrusten eine Schutzwirkung haben oder ob sie die Gesteinszersetzung beschleunigen. Dürfte im Einzelfall unterschiedlich sein.

Einige Mikroorganismen (Blau- und Grünalgen) benötigen nur Mineralstoffe + Kohlendioxid + Licht. Sie gehören zu den Erstbesiedlern von frisch gebildetem vulkanischem Gestein.

Die Spezialisierung von Mikroorganismen ist zuweilen erstaunlich; so fand man in Silberminen Bakterien, die Silbernitrat als Stickstofflieferant abbauen und metallisches Silber abscheiden, obwohl Ag-Ionen sonst meist extrem bakterizid sind.

In den Abwässern einer alten Goldmine bei Limoges (Frankreich) fand man ein Bakterium das dreiwertiges Arsen zu Arsenat oxydierte.

- Anaerobe thermophile Archebakterien haben teils Lebensoptima bei bis zu 140°C (Unter erhöhtem Druck.) -

Verwitterungsgeschwindigkeit

Die Verwitterungsgeschwindigkeit kann statt in **Masse pro Fläche und Zeit** auch durch die Division durch die Dichte und Kürzen der metrischen Dimensionen ausgedrückt werden als

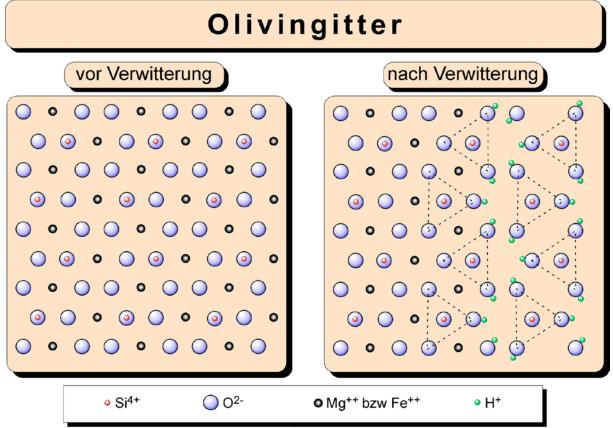
Länge pro Zeit Größenordnung $1\mu m/a = 1m$ in 1 Mio $a \Rightarrow$ Bubnoff unit (geomorphologischer Begriff, fasst chem. <u>und</u> physikalische Verwitterung zusammen! Die berechneten Abtragungsraten für Ebenen liegen meist zwischen 10 und 90 Bubnoff-Einheiten.)

Die chemische Verwitterung ist in dieser Dimension der am langsamsten ablaufende Vorgang in der Natur!! (Vergleich mit Hebung/Senkung und Plattentektonik.)

Zwischen 1940 und heute wurden hunderte von experimentellen Arbeiten zur chemischen Verwitterung publiziert. Die Ergebnisse lassen sich so zusammenfassen:

<u>Methode</u>: Pulver im silt-Bereich/ Oberfläche durch Gasadsorption bestimmt, (BET-Methode) - gelöste Menge durch Analyse aliquoter Volumina - batch oder Durchfluss, teils pH constant durch Puffer oder Säure/Lauge-Zusatz.

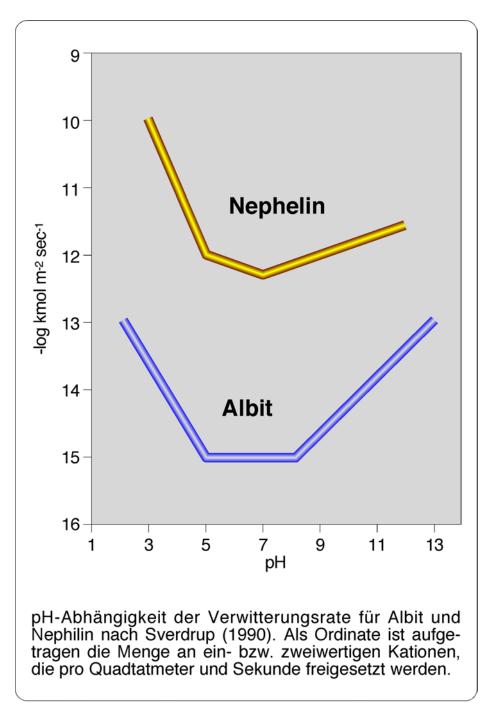
<u>Kritikpunkte</u>: Oberfläche meist zu gross / MWG = pH soll konstant sein, alle anderen Konzentrationen möglichst = Null!! Dann grösste Verwitterungsgeschw.


<u>Eigene Arbeiten</u>: Seit 1985 / Makroskopische Flächenbestimmung + Gewichtsdifferenz, deshalb lange Versuchszeiten / Dafür Konzentrationen annähernd Null durch Benutzung von Kationenaustauschern in der H⁺ Form.

Karbonate (Calcit, Dolomit, Magnesit), sowie Sulfate + Phosphate lösen sich stöchiometrisch auf. -

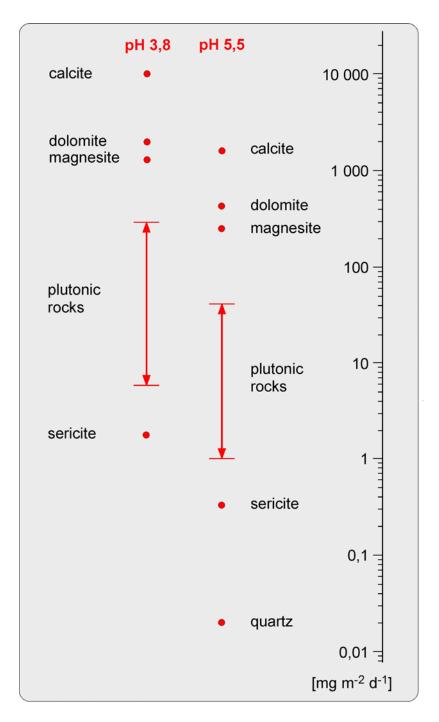
Dies ist bei Silikaten anfangs nicht der Fall. Bei Kontakt der Silikatoberfläche mit Wasser werden die zwei- und ein-wertigen Ionen an der Oberfläche sehr schnell durch H₃O⁺ Ionen ersetzt. Dies betrifft aber nur etwa eine Tiefe von einer halben Elementarzelle!! Das Fortschreiten der Reaktion erfordert einen diffusiven Transport von H⁺ aus der Lösung durch die gestörte Schicht zum Kristall und umgekehrt eine Diffusion der verdrängten Kationen von der Gitteroberfläche durch die gestörte Schicht in die umgebende Lösung. Beim Fortschreiten der Reaktion werden auch Al und andere dreiwertige Ionen durch H⁺ ersetzt. Es bildet sich auf dem Gitter eine kationen-verarmte Schicht aus, die vorwiegend aus SiO₂ besteht. (cation depleted layer)

Der gestörte Gitterbereich besteht im Wesentlichen aus den SiO_4 - Tetraedern in dem der Struktur des Minerals entsprechenden Vernetzungszustand. Die freien Tetraedersauerstoffe, die im Gitter ehemals ein-, zwei- oder drei-wertige Kationen koordinierten, sind in OH-Gruppen übergegangen. - Schliesslich lösen sich Orthokieselsäure H_4SiO_4 oder Polykieselsäuren von der Störschicht ab und gehen in Lösung. Im neutralen bis saurem Bereich sind solche Kieselsäuren nicht lange


beständig, sie kondensieren zu kolloidal löslichen, kugelförmigen SiO₂-Teilchen mit einem Durchmesser von 5 - 80 nm.

Eine stöchiometrische Auflösung ist dann erreicht, wenn die Reaktion des Kristallgitters mit dem diffusiv herantransportierten H⁺ gerade soviel neue Störschicht pro Zeit schafft, wie an der Grenzfläche Störschicht/Lösung abgebaut wird. Bei Normaltemperatur und im neutralen bis saurem Bereich ist dies im Experiment meist nach etwa 20 - 30 Tagen erreicht.

Diese Schichten wurden auf Feldspäten und eisenfreien Ketten- und Bandsilikaten mit modernen physikalischen Methoden auch direkt nachgewiesen. Sie haben im neutralen Bereich eine Dicke von etwa 2 nm, mit sinkendem pH wird die Schicht dicker.


Die Ergebnisse aller experimentellen Arbeiten der vergangenen Jahrzehnte können wie folgt zusammengefaßt werden. In der graphischen Darstellung mit dem Logarithmus der Auflösungsgeschwindigkeit als y-Achse und dem pH-Wert als x-Achse ergibt sich ein flaches, fast pH-unabhängiges Minimum im Bereich etwa pH 5 bis 7. Sowohl im alkalischen, als auch im sauren Bereich schließt in dieser Darstellung ein etwa linearer Anstieg an. Die Steigung der Geraden im Bereich pH 5 bis 2 ist von Mineral zu Mineral unterschiedlich, sie beträgt 1 bis 3 Zehnerpotenzen. Diese Steigung ist am geringsten bei Muskowit, am höchsten bei Olivin. -

Eine abweichende Darstellung ergibt sich bei der Quarzauflösung, hier zeigt sich ein flaches, annähernd pH-unabhängiges Minimum im sauren Bereich, an den sich ab etwa pH 7 ein flacher Anstieg im alkalischen Bereich anschließt. -

In Porenzwischenräumen silikatischer Gesteine, bzw. entsprechenden Lockersedimenten kann auch ein alkalischer pH von 8 bis 10 erreicht werden!

Unter den gesteinsbildenden Silikaten ist Plagioklas am häufigsten, er verwittert relativ schnell. Seine Verwitterungsgeschwindigkeit hängt vom Anorthitgehalt ab, bei 20° C, pH 5,5 liegt seine Verwitterungsgeschwindigkeit entsprechend bei 0,15 (Albit) bis etwa 9 μ m/a (An) bei dauernder Wasserzufuhr.

Noch erstaunlicher als diese sehr geringen Werte ist der erhebliche Unterschied zwischen leicht und schwer verwitternden Mineralen. Sieht man einmal von extrem schwer verwitternden Mineralen wie Quarz, Zirkon, Topas, Turmalin und Beryll ab, so erstreckt sich der Bereich zwischen den langsam verwitternden Mineralen (Alkalifeldspäte, Muskowit) und den schnell verwitternden Mineralen (Calcit, Olivin, Nephelin, Dolomit) über fast vier Zehnerpotenzen!!

Die vorstehend geschilderten Ergebnisse von Experimenten können nicht ohne weiteres auf die natürliche Verwitterung übertragen werden. In der Natur gibt es Trockenperioden, weder ist der pH-Wert noch die Temperatur stets gleich; in der Lösung vorliegende ein-, zwei- und dreiwertige Ionen verlangsamen die Auflösung. Alle diese Faktoren bewirken, dass die wirkliche Verwitterungsgeschwindigkeit fast

immer beträchtlich niedriger ist. So fand man bei der experimentellen Untersuchung der rein chemischen Auflösungsraten pro Jahr bei der Exposition von Kalken in der Atmosphäre in Japan und England in der Natur nur Werte im Bereich von 10 bis 39% der Labordaten!

Andererseits kann die biologische Aktivität von Mikroorganismen zu lokaler Säurebildung führen und durch eine Erniedrigung des pH auf Werte zwischen 2 und 4 die Verwitterungsrate je nach Mineral um den Faktor 10 bis 1000 steigern. - Organische Stoffe können durch Komplexbildung manche Kationenkonzentrationen erniedrigen und dadurch die Verwitterung beschleunigen. Erst 1999 wurde die komplexierende Wirkung einiger Polyalkohole für Kieselsäure nachgewiesen. Erste experimentelle Hinweise zeigten bei der Silikatverwitterung eine Steigerung der Verwitterungsrate bei der Anwesenheit von Sacchariden! - Insbesondere die Verwitterung von Sulfiden wird durch die Tätigkeit von Mikroorganismen (Thiobacillus ferrooxydans) bewirkt und dadurch stark beschleunigt.

Fazit:

- Die rein anorganisch-chemische Verwitterung ist ein extrem langsamer Vorgang.

Die Drift von Kontinenten ist um den Faktor 10.000 schneller!

- Die maximalen Abtragungsraten liegen bei Normalbedingungen (ca. 20°C , pH 5 bis 6) zwischen 0,07 (Muskowit) und 24 μ m/a (Olivin). (Calcit hat 175 μ m/a)
- Nur die wechselseitige Wirkung von physikalischer und chemischer Verwitterung erklärt die tatsächliche Verwitterung!
- Die chem. Verwitterung wirkt nicht nur an der Erdoberfläche; sie beginnt, sobald die Kristalloberfläche mit Wasser in Kontakt kommt.

 In vielen Fällen ist eine Abgrenzung der Verwitterung von hydrothermaler bis telethermaler Alteration kaum möglich. (Kaolinisierung, Chloritisierung, Sericitisierung, Uralitisierung, Saussuritisierung)
- Der Einfluss der Biosphäre auf die exogenen Vorgänge wird auch von Geowissenschaftlern häufig unterschätzt. Dies gilt insbesondere für den Einfluss von Mikroorganismen.

Feldbeobachtungen zeigen eine schnellere Verwitterung im feucht-tropischen Klima. Es ist anzunehmen, dass dies sowohl auf das höhere Wasserangebot, als auch auf die höheren Temperaturen und damit höhere biologische Aktivität zurückzuführen ist. -

Verwitterung und Bildung von nutzbaren Lagerstätten

- <u>Seifen (placer deposits)</u> ⇒ Mineral ist relativ verwitterungsbeständig, hart und hat meist eine Dichte höher als Quarz ⇒ Anreicherung beim Transport (Fluss, Brandung, Gezeitenströmung) z.B. Gold, Diamant, Zinnstein, Columbit/Tantalit, Titanomagnetit, Rutil, Zirkon, Ilmenit, Granat, Pt, Monazit, Xenotim, Korund, Spinell.

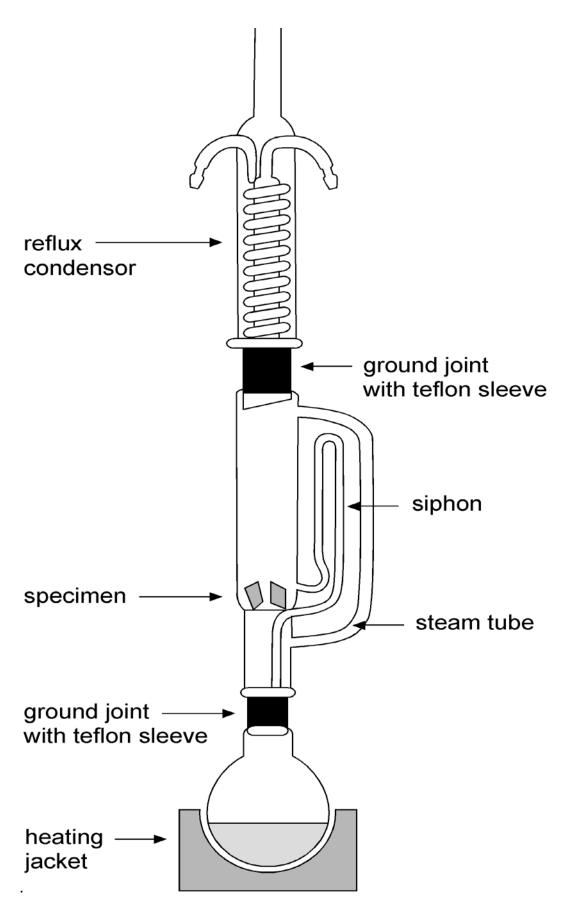
- Verwitterungsreste: Bauxit

Bei der Verwitterung von Ni-haltigen Olivin entstehen Nickelhydrosilikate wie Garnierit

Bei der Verwitterung von Zr-haltigen Silikaten, die in Nephelinsyeniten vorkommen, bleibt Baddeleyit ZrO₂ zurück.

- <u>Anreicherung von Elementen im Ausgehenden von Sulfiderzen</u> in der Oxydationszone, bzw. Reduktionszone (Zementation) z.B. Au, Cu-, Ag-, Zn-, Bi-Minerale
- **Neubildung von Mineralen** durch Reaktion von Sulfiden mit Wasser, Sauerstoff, Kohlensäure und mit Cl⁻, PO₄ ³⁻, VO₄ ³⁻, SO₄ ²⁻ ⇒ **Eiserner Hut (gossan)**

<u>Pegmatit-Minerale</u> lassen sich manchmal leichter aus in situ verwitterten Lagerstätten gewinnen: Feldspäte sind zu Tonmineralen verwittert, schwer verwitternde Minerale wie Beryl, Turmalin, Tantalit stecken darin. – In ariden Gebieten lassen sich total verwitterte Pegmatite manchmal bereits aus grosser Entfernung am hellen Quarz erkennen.


<u>Die meisten der etwa 4200 bekannten Minerale sind unter</u> Oberflächenbedingungen gebildet worden!

Beurteilung der Verwitterungsbeständigkeit von Bausteinen

Grundlage: Dünnschliff ⇒ Mineralbestand ⇒ Gefüge, Porosität

leaching-tests ⇒ Soxhlet-Extraktion, bei Frosteinwirkung auch Quervain-Test

Rechtwinklig geschnittene Gesteinsproben – Oberfläche wird mit Schiebelehre vermessen – Trocknung bis zur Gewichtskonstanz bei 110°C – Bestimmung des Gewichts mit Analysenwaage – Im Siedekolben 15% Essigsäure – Auflösung bei 100°C pH 2.2, je nach Gestein zwischen 15 Minuten (Calcit haltig) und bis zu 3 Tagen. – Danach erneut Gewichtsbestimmung – Berechnung der Auflösungsgeschwindigkeit in Milligramm per Quadratmeter und Tag. –

Bei einer <u>Erniedrigung des pH-Werts und der Temperatur</u> erhöht sich die Verwitterungsgeschwindigkeit aller Minerale, allerdings ist die Steigerung erheblich größer bei den schneller verwitternden Mineralen!!

Durch eine experimentelle Verwitterung bei pH 2.2 und 100°C wird eine Beschleunigung um 3 bis 4 Zehnerpotenzen erreicht

Experimentelle Tests können insbesondere zeigen, ob durch selektive Verwitterung eine Lockerung des Gesteinsverbandes eintritt ⇒ **Absanden**

Oft tritt bei eintretender Auflösung schnell ein Absanden von unverwitterten Mineralen auf, da der Kornverband gelockert wird! - Unter Umständen ist ein Gestein aus schneller verwitternden Mineralen wie Basalt, bei dem aber keine Lockerung des Kornverbands eintritt, länger stabil als ein zur Vergrusung neigender Granit! (Schliesslich ist die Verwitterungsgeschwindigkeit absolut nicht sehr gross!)

Die Verwitterung wird stets begünstigt durch eine offene Porosität!

Stuckgips-Teile für Fassaden können witterungsbeständiger gemacht werden:

 $Ba(OH)_2 + CaSO_4 2 H_2O = BaSO_4 + 2 H_2O + Ca(OH)_2$

der Baryt ist extrem schwerlöslich, die Teile werden anschliessend mit Kali-Wasserglas getränkt, dadurch wird das Calciumhydroxid in ein wasserunlösliches Kalium-Calcium-Glas überführt.

Zement ist eine bei hoher Temperatur (ca. 1400°C) gesinterte Masse aus Kalk+Ton+Fe-oxiden, wird nach dem Abkühlen fein gemahlen.

Mit Wasser angerührt wird diese Masse langsam fest. Dabei bilden sich Calciumhydroxid-Silikate (CSH-Phasen) und Aluminate, sowie Calciumhydroxid. Die Aushärtung erfolgt auch unter Wasser und ohne Luftzutritt.

Beton ist eine möglichst dichte Packung von Kies + Grobsand, deren Poren durch abgebundenen Zement gefüllt sind. Die Korngrössenverteilung von Kies und Sand, sowie die Art des benutzten Zements sind von entscheidender Bedeutung für die Festigkeit, aber auch für die Verwitterungsbeständigkeit des Betons!!

Die Verwitterungsgeschwindigkeit der Zementmatrix ist meistens vergleichbar etwa mit der von Calcit, bzw. von Dolomit!!

Beton kann verwitterungsbeständiger gemacht werden durch eine Behandlung mit einer Lösung von Mg-, bzw. von Zn-silicofluorid. MgSiF₆. Es bildet sich durch Umsetzung mit dem Calciumhydroxid, bzw. den Calciumhydroxisilikaten ein Gemisch von Fluorit, MgF₂, bzw. Zinkfluorid und kolloidalem SiO₂, dabei sinkt insbesondere die Porosität erheblich \Rightarrow **Fluatieren.**

Nichtporöse, glatte Oberflächen (poliert oder glasiert) sind mindestens mittelfristig weniger anfällig für Verwitterungseinflüsse!

Alle organischen Schutzschichten (Lacke, Füllung von Poren mit Kunststoffen) sind sehr skeptisch zu beurteilen. Praktisch alle organischen Materialien werden von Organismen angegriffen, bzw. reagieren unter dem Einfluss von Licht + Wasser mit Sauerstoff oder Stickoxiden (Versprödung). Relativ beständig sind lediglich total

fluorierte Produkte, die überdies auch hydrophobe Oberflächen bilden. Über ihre extreme Langzeitbeständigkeit liegen aber kaum Daten vor.

- Bei Restaurationsarbeiten werden poröse Steine öfters mit Kieselsäureestern behandelt: Durch langsame Verseifung der Ester wird in den Poren Kieselsäure ausgeschieden. - Neuere Methode: Tränken mit Lösungen von kolloidaler Kieselsäure.

Beständigkeit anderer technischer Produkte

Hochgebrannte, nicht poröse Keramiken, wie etwa Porzellan und Steingut, sind sehr beständig. Die Verwitterungsgeschwindigkeit ist etwa vergleichbar mit Orthoklas. Günstig ist eine Glasur \Rightarrow Klinker. - Bei gewöhnlichen Ziegeln hängt die Beständigkeit sehr stark von der Zusammensetzung und der Porosität ab. - Kalksandsteine sind in ihrer Verwitterungsgeschwindigkeit vergleichbar mit Beton.

Glas wird im tropischen Klima bei hoher Luftfeuchte von bestimmten Pilzen besiedelt und entglast partiell!

Cr/Ni-Stahl (Edelstahl) ist nur bei Luftzutritt beständig! -

Gut eloxiertes Aluminium ist sehr beständig, kann aber bei Verletzung der Oberfläche korrodieren. - Titan und einige seiner Legierungen sind extrem beständig wegen Ausbildung einer Oxidschicht, leider sehr teuer. – dito: Zirkonium – Niob + Tantal

Gold ist an Luft zwar korrosionsfest, aber nur genügend dicke, elektrolytisch aufgebrachte Schichten sind nicht porös!

Beste Beständigkeit : Korund α-Al₂O₃, Spinell MgAl₂O₄, SiC/Si, SiC

Spezielle Anwendungen: SiC in Beton für Treppenstufen / Präparation von Holz mit Kaolin oder Kalk

In Zukunft könnten Beschichtungen auch für spezielle Baustoffe eine Rolle spielen. Es sind eine Reihe von Verfahren entwickelt worden mit denen sehr dünne, aber extrem korrosionsfeste Schichten auf Metalle, Oxide und Silikate aufgebracht werden können. (Bedampfung, Plasmaspritzen, Chemische Abscheidung aus der Gasphase, Reaktion eines Gases mit der Unterlage usw.) Abgeschiedene Stoffe: SiC, Diamant, Graphit und amorpher Kohlenstoff (Glaskohle), TiO₂, Borcarbid, Wolframcarbid und andere Carbide und Nitride. Die Schichten dürfen aber nicht porös sein, müssen gut haften und sollten sich im thermischen Ausdehnungskoeffizient nicht zu stark von der Unterlage unterscheiden.

Das einzige natürliche Mineral das den Kreislauf der Gesteine mehrmals durchlaufen kann ohne völlig korrodiert zu werden ist Zirkon ZrSiO_{4.} Da das Mineral meist etwas Uran enthält ist es sehr gut für Datierungen geeignet.

Von allen synthetischen Materialien dürfte nur Siliziumcarbid SiC (Karborundum) eine vergleichbare Beständigkeit aufweisen.

Es gibt aber einige technische Produkte die immerhin auch intensive Erosion im Laufe der Sedimentation überstehen können und massenhaft produziert werden.

Solche Stoffe könnten in sehr ferner Zukunft eine Rolle als Artefakte spielen, die eine bestimmte Zeit des Industriezeitalters in Sedimenten kennzeichnen.

Beispiele:

- Porzellanscherben und Flaschenglas ab Mitte des 19. Jahrhunderts
- Zündkerzen und SiC ab 2ter Hälfte des 20. Jahrhunderts
- mit seltenen Erden dotiertes ZrO₂ der Lamda-Sonden von Kraftfahrzeugen ab etwa 21. Jahrhundert