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Particle density

Number of particles in a unit volume:

n(x , y , z , t)

Number of particles in an arbitrary volume Ω:

N(t) =

∫

Ω

n d3x

Change of N(t) in an arbitrary volume:

dN

dt
= (income) − (outcome)
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Income

It is convenient to let “incomes” be positive and negative so that
we may write:

dN

dt
=

∑

(income)

There are two different reasons for changes in N(t)

Volume income (“birth” (positive) and “death” (negative))

Fluxes over the boundaries (“migration”)
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Volume sources

Number of particles that are created in a unit volume per unit time

q(x , y , z , t, n . . .)

The corresponding change of N(t) can be quantified

dN

dt
=

∫

Ω

q d3x

Different source terms are possible

Predefined external source q(x , y , z , t)

Chemical reaction q = ±kn

Nonlinear source, e.g., q ∼ n2
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Flux

Number of particles that flow through a unit surface per unit time

j(x , y , z , t)

The corresponding change of N(t) can be quantified

dN

dt
= −

∫

∂Ω

j dS

Divergence theorem

dN

dt
= −

∫

Ω

(∇j) d3x

Where

∇j =
∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
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Derivation

By the definition of N(t)

dN

dt
=

d

dt

∫

Ω

n d3x =

∫

Ω

∂n

∂t
d3x

Fluxes and sources

dN

dt
=

∫

Ω

(−∇j + q) d3x

Therefore
∫

Ω

(∂tn + ∇j − q) d3x = 0

that is valid for an arbitrary volume.
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Continuity equation

We have just derived

One of the most important physical equations

∂n

∂t
+ ∇j = q

However we have only one equation for both n and j.
The continuity equation can not be used as is, a physical model,
e.g.,

j = j(n)

is required.
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Flux models

Flux is caused by spatial changes in n(x , y , z , t).

It is natural to assume that j ∼ ∇n.

The proportionality coefficient is denoted −D.

Fick’s first law (for particles) j = −D∇n.

Nonuniform diffusion j = −D(x , y , z)∇n.

Non-isotropic diffusion jk = −
∑

i=x ,y ,z

Dki∂in.

Non-linear diffusion j = −D(n)∇n.

Fourier’s law (for energy) and many others.

R. Abart and E. Petrishcheva Mathematics of Diffusion Problems



Diffusion equation

Having a physical model (diffusion) we can proceed with the
derivation of a self-consistent mathematical equation:

∂tn + ∇j = q

j = −D∇n

We have just obtained another fundamental equation

∂tn = ∇(D∇n) + q

Let us consider only a uniform isotropic medium

∂tn = D∇(∇n) + q
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Laplacian

It is convenient to introduce the following notation

△ n = ∇(∇n)

where

△ n =
∂2n

∂x2
+

∂2n

∂y2
+

∂2n

∂z2

E.g., stationary distributions of particles are given by the famous

Laplace (Poisson) equation

D △ n = −q
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Resume

Linear diffusion equation in 1D

∂n

∂t
= D

∂2n

∂x2
+ q(x , t)

n = n(x , t) should be found;

D = const and q = q(x , t) are known;

the solution should exist for all t ≥ 0;

the initial distribution n0(x) = n(x , 0) is known;

a < x < b with the boundary conditions at x = a and x = b;

x > 0 and −∞ < x < ∞ are also possible.
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Boundary conditions

1 Dirichlet: edge concentrations are given, e.g.,

n(x = a, t) = 1

2 Neumann: edge fluxes are given, e.g.,

∂xn(x = b, t) = 0

3 More complicated: e.g., combined Dirichlet and Neumann

[

α(t)n(x , t) + β(t)∂xn(x , t)

]

x=a,b

= γ(t)
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Delta function

It was first introduced by Dirac to represent a unit point mass.

The physical definition of δ(x − a) (e.g., mass density) is

δ(x − a) = 0 if x 6= a

δ(x − a) = ∞ if x = a

and
∫ ∞

−∞
δ(x − a) dx = 1

so that we have a unit mass at x = a.
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Point source

Let N particles be initially placed at x = a. Their concentration
n(x , t) is subject to the diffusion equation

∂tn(x , t) = D∂2
xn(x , t)

with

−∞ < x < ∞,

where one usually assumes that

n(x , t) → 0 at x → ±∞;

and the following initial condition

n(x , 0) = Nδ(x − a).
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Kernel solution

The “point source” problem can be solved explicitly

n(x , t) = NK (x , a, t),

where the kernel solution

K (x , a, t) =
1√

4πDt
exp

[

−(x − a)2

4Dt

]

.

Here

∂tK = D∂2
xK ;

K (x , a, t) = K (a, x , t);

limx→±∞ K (x , a, t) = 0;

limt→+∞ K (x , a, t) = 0;

limt→0 K (x , a, t) = δ(x − a).
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Initial value problem

We can now give a formal solution of the initial value problem

∂tn(x , t) = D∂2
xn(x , t),

where

−∞ < x < ∞;

lim|x |→∞ n(x , t) is finite;

n(x , 0) = n0(x).

One replaces N with n0(a)da for each x = a and uses linearity

n(x , t) =

∫ ∞

−∞
K (x , a, t)n0(a)da.
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Diffusion problem with a source term

Problem with the trivial initial distribution n0(x) = 0 and a source
term

∂tn(x , t) = D∂2
xn(x , t) + q(x , t)

where

−∞ < x < ∞;

lim|x |→∞ n(x , t) is finite;

n(x , 0) = 0.

The idea of solution is similar. The results reads

n(x , t) =

∫ ∞

−∞

∫ t

0

K (x , a, t − τ)q(a, τ)dτda.
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General diffusion problem

It is also easy to solve the general problem

∂tn(x , t) = D∂2
xn(x , t) + q(x , t),

where

−∞ < x < ∞, n(x , 0) = n0(x);

lim|x |→∞ n(x , t) is finite.

The solution is a simple combination of the two previous results:

n(x , t) =

∫ ∞

−∞
K (x , a, t)n0(a)da+

+

∫ ∞

−∞

∫ t

0

K (x , a, t − τ)q(a, τ)dτda.
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Application

This is an important standard situation for many applications:

∂tn(x , t) = D∂2
xn(x , t),

where

n0(x) =

{

1 for x < 0,
0 for x > 0.

−5 0 5
−0.5

0

0.5

1

1.5
 time: 200000 diffusion coefficient:1e−005

distance x

co
nc

en
tr

at
io

n

The solution reads

n(x , t) =
1

2
Erf

(

x

2
√

Dt

)

,

Erf(x) =
2√
π

∫ x

0

e−s2

ds.
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Another application

Another important stan-
dard solution of

∂tn(x , t) = D∂2
xn(x , t),

where

n0(x) =

{

1 if a < x < b,

0 otherwise.
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The solution is found by a direct integration

n(x , t) =
1

2

[

Erf

(

x − b

2
√

Dt

)

− Erf

(

x − a

2
√

Dt

)]

.
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How D can be measured

We start from the standard solution n(x , t) =
1

2
Erf

(

x

2
√

Dt

)

,

and measure amount of particles m(T ) that have passed through
x = 0 into the region x > 0 as a function of time T

m(T ) = Area

∫ T

0

(−D∂xn)x=0 dt = Q

√

DT

π

The dependence m vs√
T is linear and there-

fore

D =
π tan2 α

Q2
.
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