
From Science to standardization, a necessary step to include bioavailability in risk assessment

Joop Harmsen Alterra, Wageningen-UR

 Bewertung von Schadstoffen om Flächenrecycling und nachhaltigen Flächenmanagement auf der basis de Verfüchbarkeit/Bioverfüchbarkeit (BioRefine)
 07. und 08. Oktober 2009 in Berlin

WAGENINGENUR

What do scientists know?

- Total concentrations over estimate risks
- Risk assessment should be based on available concentrations
- We do understand bioavailability
- We have several methods to measure bioavailability

We still discuss about definitions Your method is the best one and should be used all over the world

What do regulators/administrations know?

Long experience with total concentration
Total concentrations can be measured reliable
Many standard procedures available
Many 'scientific' assessment procedures

Risks are overestimated
 Limited finances available to remediate all contaminated sites

Public acceptance of measures is important

What do regulators/administrations want?

A risk assessment they can explain
Why is this heavily contaminated site not risk full
Use of methods that are also used by others
Clear results and no further discussion
Cheap and simple

STANDARDIZATION

Standard method

Science

Many methods available

Scientific goal

- · Complex world to be solved with different methods
- · Early standardisation leads to misunderstanding of the processes
- · Complex methods

Assessment goal teraction

- · Equal treatment
- Comparability
- · Without standardisation no system for decision making
- Simple methods

Regulation, administration:

Give me 'the' method to measure bioavailability of contaminants

From science to regulation: Standardization ISO/TC190 Soil Quality Working group 'Bioavailability'

What kind of standards

Connecting chemistry and biology
Limited set of methods
Taking into account present regulations
Scientific base

<u>First step</u>

ISO 17402 Soil quality — Guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials, 2008

Conceptual framework

Direction for use and further development of methods

ISO 17402

Definition

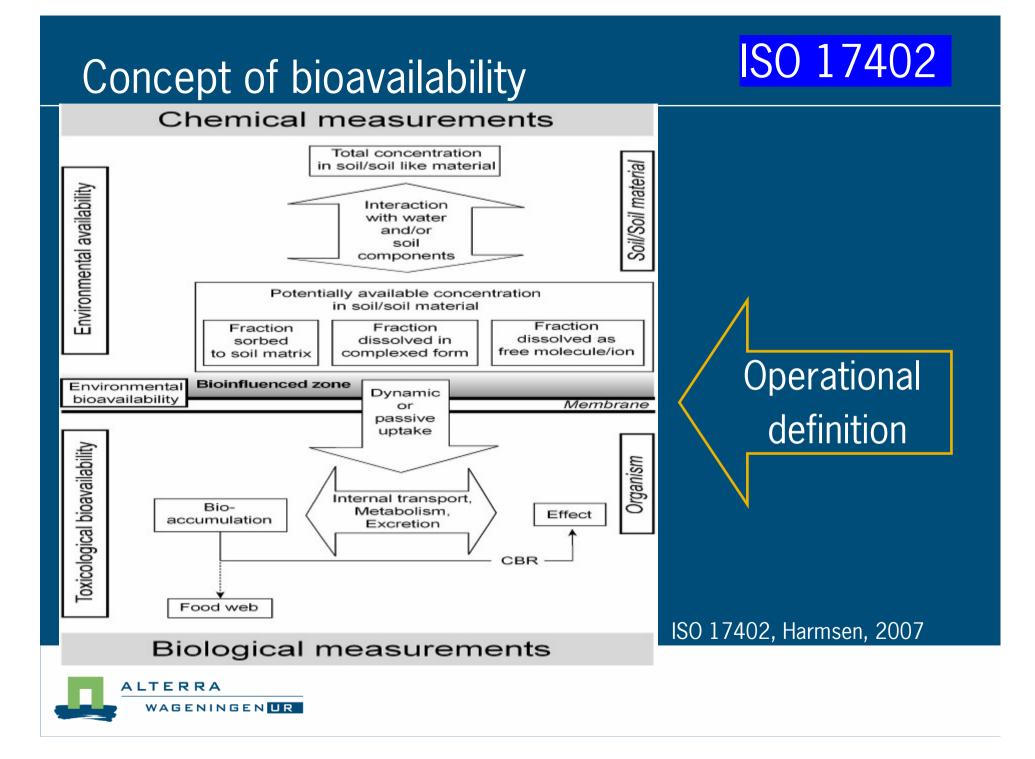
Bioavailability is the degree to which chemicals present in the soil matrix may be absorbed or metabolised by human or ecological receptors or are available for interaction with biological systems (ISO 11074)

- time?
- Different availabilities for different receptors?

Conceptual

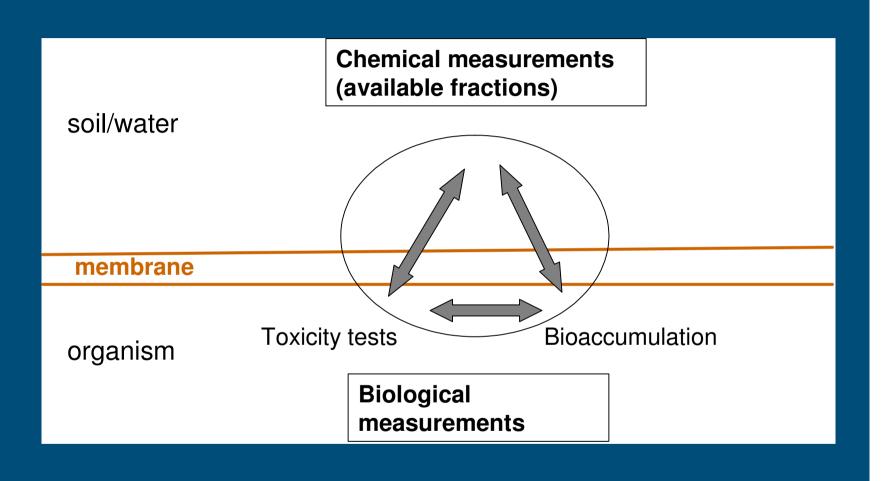
• The amount that can be transported to the bio-influenced zone and affect organisms within a defined time

Operational


- define organism and effect
- define conditions
- define time

Tool

• How to predict?



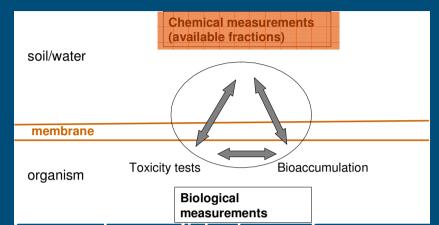
Concept Bioavailability

ISO 17402

Bioavailability in relation to assessment

of soil function

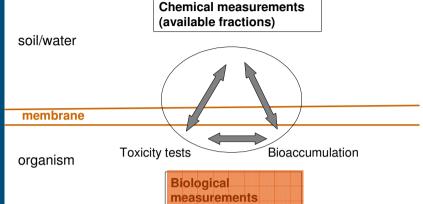
Soil functions and organisms to protect
Risk assessment
Protection goals


ISO 17402

Chemical methods to

assess bioavailability

- water- based extractions;
- concentration in pore water;
- extraction from the water (use of an extra solid phase for exhaustive extraction of the water phase);
- adsorption tools that mimic behaviour of organisms;
- solvent-based extractions;
- weak solvent;
- short extraction or extraction with smaller energy input;
- weak acid or complexing agent (heavy metals) extractions.

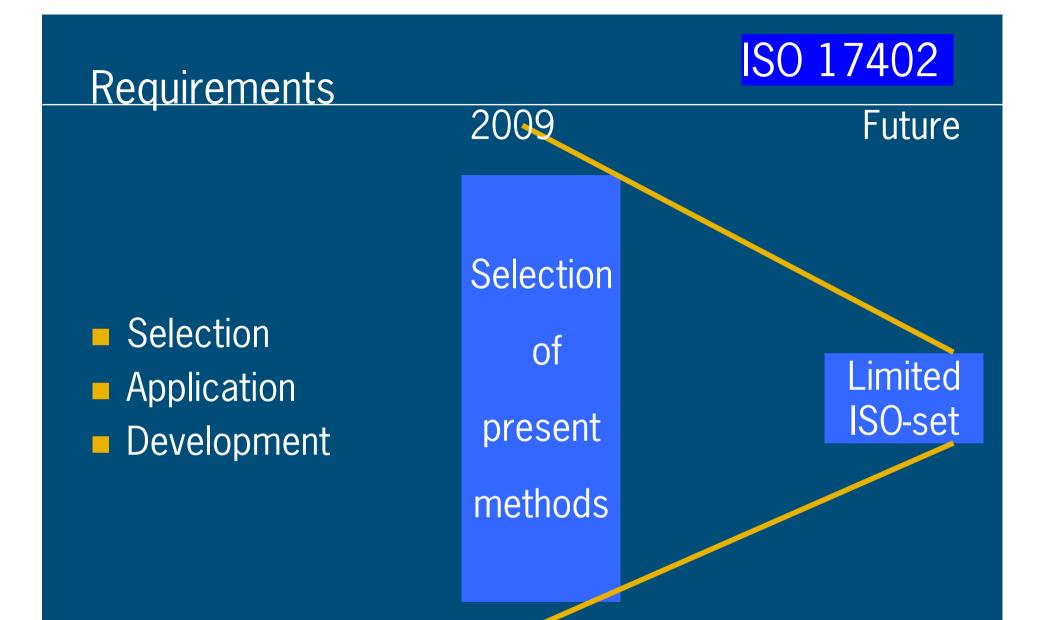


Biological/ecotoxicological methods to assess bioavailability

- molecular level;
- cellular level;

ISO 17402

- metabolic level (enzymatic activities or biomarkers);
- individual level (accumulation, mortality, growth, reproduction, behavioural responses);
- population level (abundance, diversity);
- community level (species composition).


ISO 17402

Pathways and chemical methods

Human

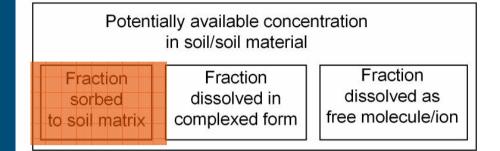
- Soil ingestion Methods for soil ingestion
- Dermal contact
 Methods for dermal uptake
- Inhalation of soil
- Groundwater used for drinking water Methods for leaching
- Exposure of higher animals
- Exposure of soil micro-organism Methods for soil organisms
- Exposure of soil invertebrates (micro-, meso- and macro-fauna)
- Exposure of plants Methods for plants

<u>Heavy metals (pore water)</u>

neutral extract

- Present standards
- Present regulations
- Present practice

Potentially available concentration in soil/soil material						
Fraction	Fraction	Fraction				
sorbed	dissolved in	dissolved as				
to soil matrix	complexed form	free molecule/ion				

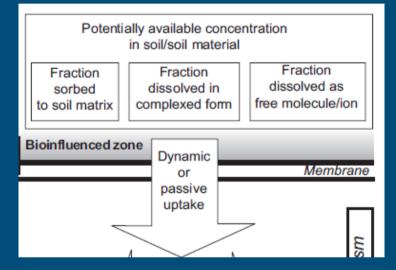

O.01 M CaCl₂ nutrients (ISO 14255)
 Decreases DOC
 0.001 M CaCl₂ leaching (ISO 21268-2)
 1M NH₄NO₃ plant uptake, German regulation (ISO 19730)
 1 M KCL nutrients ISO (ISO 14256)
 Limited Scope

Heavy metals (sorbed)

Acid extract

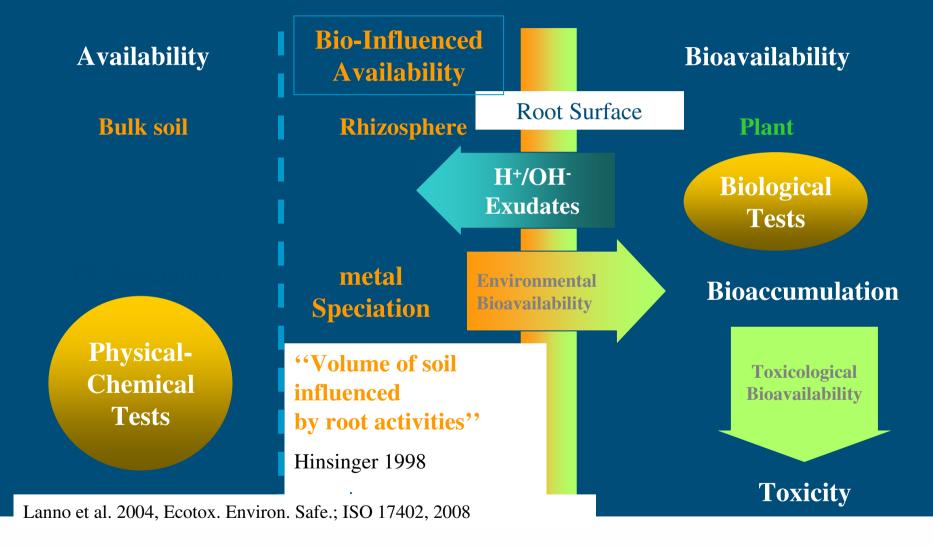
- Present standards
- Present regulations
- Present practice

Aqua regia , ISO 11466) To strong
 0.43 M HNO₃ (Netherlands)
 1 M HCI (Japan)
 Acid extract pore water = transfer function
 C pore water = f(C_{acid extract}, pH, clay, OM, DOC)



Heavy metals (into the organism)

- Non equilibrium, dynamic approach
 - DGT
 - Kinetic extracts


Toxicological availabilityDifferent ISO standards

Bioaccumulation

Plants do not react standard (Matthieu Bravin)

Development of standard biological test

- Use present knowledge
- Should fit in the ISO-framework
- Simple and cheap
- Applicable all over the world
- Scientific basis
- Make planning in agreement with ISO-working group
 - Description of method
 - International acceptation
 - Validation
 - Supply drafts and data

RHIZOtest: a Plant-Based Biotest to Assess the Environmental Bioavailability of Trace Elements to Plants in Contaminated Soils 2 M. N. Bravin, Perforated Root mat A. Bispo and platform P. Hinsinger, air Filter paper Soil laver (1.5-4 mm thick) wick . (Ø 40 mm) Float -France 30-µm mesh Nutrient solution Nutrient solution

Preculture period

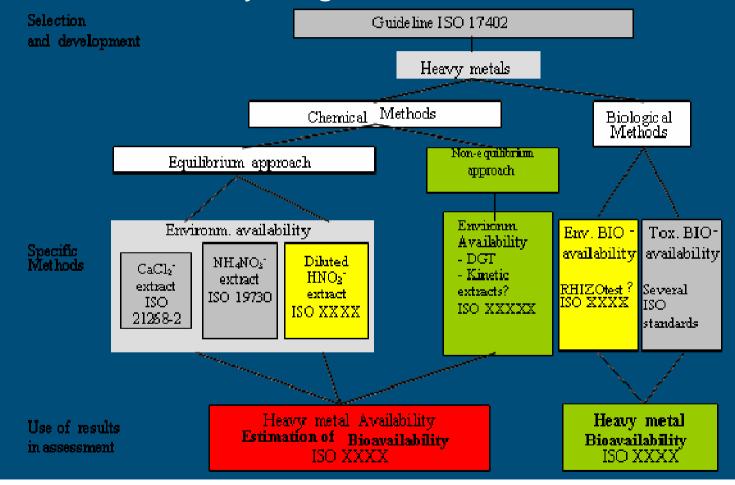
in hydroponics

2 to 3 weeks

Test culture period Soil-plant contact 1 week

Bioavailability and risk assessment

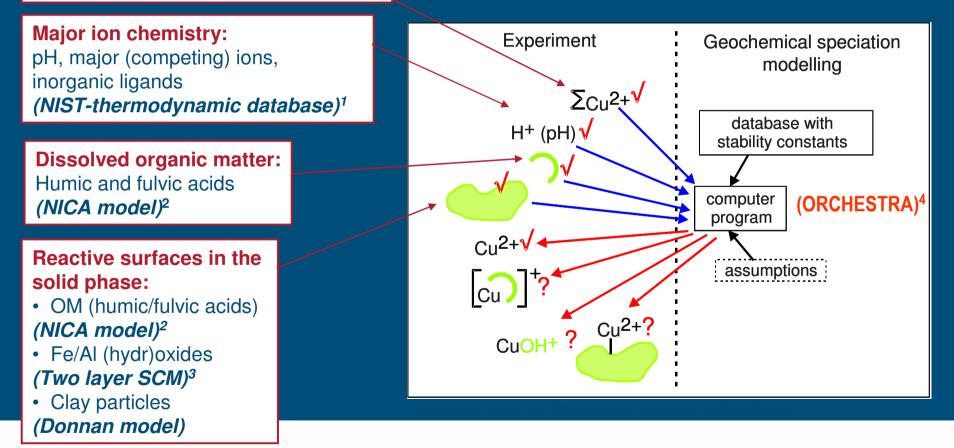
What to do with all the results


- Soil extracts
- Biological tests
- Toxicological tests
- Soil quality Assessment of the environmental bioavailability in soil Use of soil extracts for the measurement of metal availability and the estimation of metal bioavailability to organisms

Understand what you have measured

- Applicability
- Calibration
- Modeling

Soil quality — Assessment of the environmental bioavailability in soil — Use of soil extracts for the measurement of metal availability and the estimation of metal bioavailability to organisms



Multi-surface geochemical modeling of leaching processes (Rob Comans)

"Available" concentrations: \rightarrow Leaching/extraction at low pH (\approx 0.5)

ALTERRA

WAGENINGEN UR

¹ MINTEQ 4.0/NIST; ² Milne et al. (2003); ³ Dzombak & Morel (1990); ⁴ Meeussen (2003)

Consequences modeling

Soil:

- pH
- clay
- organic matter
- Fe/Al-oxides

Extract:

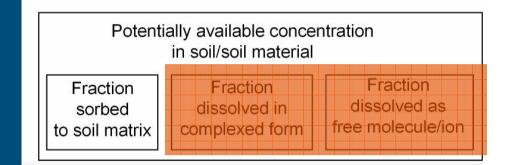
- ionic strength
- composition of macro parameters
- pH
- dissolved organic matter
- all other compounds that may form complexes with metals and are known to be present in the soil sample

Calibration

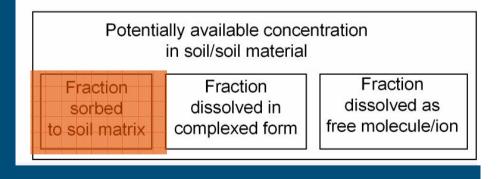
Method	Compo- nents*	Biological target	Endpoint considered for the calibration	Remarks	Reference
CaCl ₂	Cu	yeast		Include pH	Van der Zee et al., 2003
CaCl ₂	Cu, Cd, Zn, Pb, NI	Plant, Lollum Perenne	Environmental Bloavailability Root uptake	Include pH	Kalls et al., 2006
CaCl ₂	NI	Avena sativa	Toxicological Bloavailability Shoot production		Semenzin et al., 2007
CaCl2	Cd	12 genotypes in paddy rice fields	Toxicological Bioavailability Root and Grain Bioaccumulation	Soil samples taken In dewatered fields before the harvest	Römkens et al., 2008
CaCl ₂	Zn	Springtall (Folsomida Candida			Smit et al., 1997
CaCl ₂	Cd, Pb	Snall (Heltx aspersa)	Toxicological Bioavailability Concentration in the hepatopancreas	Include pH and OM. 0 to 28 d exposure to spiked solls	Gimbert et al., 2008


```
Organic contaminants
```

K_{OC} < 3 (volatiles, modern pesticides)</p>


K_{OC} > 3 (PAH, PCB, dioxins, PBFR)

Organic contaminants


Soluble in water

- Direct measurement
- Passive sampler

In equilibrium with water Strong adsorbent

Tenax, cyclodextrine

Standard structure organics

ISO 17402 Soil quality — Guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials

Passive sampling

Strong adsorbent

TENAX, cyclodextrine

Soil quality — Assessment of the environmental bioavailability in soil — Use of adsorbents for the measurement of organics availability and the estimation of organics bioavailability to organisms

Related ISO activities

ISO ISO/TS21269 1-4

- Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials - Part 1: Batch test using a liquid to solid ratio of 2 I/kg dry matter.
- Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials - Part 2: Batch test using a liquid to solid ratio of 10 I/kg dry matter.
- Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials - Part 3: Upflow percolation test.
- Leaching procedures for subsequent chemical and ecotoxological testing of soil and soil materials - Part 4: Influence of pH on leaching with initial acid/base addition.

Related ISO activities

ISO 17294

 Soil quality - Assessment of human exposure form ingestion of soil and soil material - Guidance on the application and selection of physiologically based extraction methods for the estimation of the human bioaccessibility/bioavailability of metals in soil

ISO/CD 11504

Soil quality – Assessment of impact from soil contaminated with mineral oil + methods based on existing standards for mineral oil (C₁₀-C₄₀) and volatiles

Concluding remarks

Scientists and regulators want comparable things

- Standardization is more than description of a method
- Standardization should give:
 - Guidance in choice, application and development, ISO-17402
 - Support in using results of measurements (new activity)
 - Description of limited set of methods (new activity)
- International cooperation and consensus is necessary
- State of the art
- Suitable for heavy metals and organics

With thanks to

Berlin, 2009

ISO/TC190 Working group bioavailability

Australia, 2007

Seville 2010

Society of Environmental Toxicology and Chemistry

SETAC Europe 20th Annual Meeting

"Science and Technology for Environmental Protection" 23 - 27 May 2010 - Seville, Spain

