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ABSTRACT 
Soil samples were collected in the catchment of the upper Rio Guadalentin basin in SE Spain 
(Prov. Murcia). Additional to soil chemical laboratory analysis the spectral reflectance of the soil 
samples was measured in the range of 0.35 and 2.5 µm. These reflectance measurements were 
convex-hull-normalised to derive individual absorption features. The continuous spectra were used 
to calculate colour parameters according to the Commission Internationale de l´Eclairage (CIE) 
colour scheme. Accordingly, a method for spectral detection of pedo-chemical properties in the 
investigated soil was developed based on statistical analysis which allows the prediction of the 
chemical concentrations in soils. Organic carbon contents were estimated from reflectance 
measurements based on C.I.E. colour coordinates with high accuracy (r²cv > 0.79). Inorganic 
carbon was predicted from laboratory reflectance measurements with an accuracy of r²cv > 0.71 
considering the normalized absorption area of the carbonate absorption feature at 2.33 µm and the 
C.I.E. chromaticity value x and y. The transfer of the derived regression models to HyMap data 
allowed for the spatial prediction of organic and inorganic carbon contents in the Rio Guadalentin 
basin. Concentrations obtained are in accordance with the concentration range of the chemical 
analysis. The predicted chemical soil concentrations reflect the physio-geographic conditions of the 
investigated area. 

INTRODUCTION 
Three decades after the first United Nations Conference on Desertification 1977 in Nairobi 
reduction of soil and water resources and associated land degradation processes world-wide are 
considered as one of the most important environmental problems. It is agreed that land degrada-
tion processes are climate sensitive and related to physio-geographical and anthropogenic 
conditions (i). Regarding the fact that the pressure on arid and semi-arid areas resulting from 
climatic variability, climate change, demands of increasing stocking rates and population develop-
ment was probably never as high as nowadays (ii), arid and semi-arid environments are often 
considered as risk areas in the context of global climate change and desertification dynamics. 

Soils as a substantial part of terrestrial ecosystems are extremely important, since soils are. Soil 
chemical and physical properties are basic indicators for soil productivity which is strongly related 
to agricultural production. In semi-arid and arid environments the inorganic carbon content in soils 
developed on carbonatic bedrock material is a major soil development indicator. High inorganic 
carbon concentrations point to weakly developed or degraded soils while low contents often 
indicate more developed soils. Organic carbon is a second reliable indicator related to soil quality 
and depending on water availability. In drylands water is the limiting factor for vegetation growth 
and influences organic matter production. Increasing soil organic carbon concentrations improve 
soil conditions because of better aggregation, higher infiltration rates and water retention which are 
conductive to their resistance to erosion. 
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Since the spatial detection of organic and inorganic carbon is of great importance in the context of 
land degradation monitoring and sub-recent morphodynamics, it is necessary to develop a remote 
sensing based approach for spectral determination of soil organic and inorganic carbon concen-
trations. Consequently, it is the major objective of this study to investigate the potential of 
hyperspectral imagery for this purpose and to develop an approach for the spatial assessment of 
these important pedo-chemical parameters. 

STUDY SITE 
The study site is located in the upper watershed of the Rio Guadalentin in SE-Spain (Prov. Murcia) 
and belongs to the Cordillera Betica (Figure 1). The lithology is dominated by limestone and marls. 

Southeast Spain is one of the driest areas of the Mediterranean Basin. Mean annual rainfall 
amount in the lowlands of the Guadalentin basin is around 300mm while in the surrounding 
mountain ranges annual rainfall amounts can exceed 1000mm (iii). The actual study site is charac-
terised by an average precipitation amount of approx. 180mm due to the lee location south of the 
Sierra Gigante. Following the FAO classification scheme, soils are mainly Lithosols and Calcaric 
Regosols. Since soil development according to the prevailing semi-arid climatic conditions is low, 
variations in soil colour and soil structure are limited and mostly related to characteristics of 
bedrock material. Dryland farming of several crop types dominates the valleys. The hills and areas 
which are not under agricultural use are mostly covered by Stipa tenacissima and Rosmarinus 
officinalis. Besides, mainly at higher altitudes, pines (Pinus halepensis) occur. 

METHODS 
Field sampling and chemical analysis 

To establish a relationship between soil reflectance properties and soil organic and inorganic 
carbon content based on statistical methods, a number of soil samples were collected along 
several transects in the field. In order to assess the spatial variability of the soil properties induced 
by local relief, the sampling transects were positioned along directions for which local physio-
geographic gradients (e.g. differences in surface flow) could be assumed. North- as well as South-
facing ridges and valley bottoms were crossed by the five different topographical transects 
illustrated in Figure 2. 

For each position (n = 77), an integrative sample was taken from the upper 2 cm of the soil profile 
representing an area of about 1 m². The soil samples were air-dried in the laboratory, gently 
crushed in order to pass a 2 mm-sieve and carefully homogenized. The total amounts of soil 
organic carbon and soil inorganic carbon were measured with a Leco-RC 412 analyser. 

 
Figure 1: Location of the study site 
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Reflectance measurements 

The bi-directional reflectance measurements of the soil samples were acquired in the laboratory 
with an ASD FieldSpec-II spectroradiometer (Analytical Spectral Devices). Spectral readings were 
taken at 1 nm steps between 350 nm and 2500 nm using a reflectance standard of known reflec-
tivity (Spectralon©). A 1000 W quartz-halogen lamp set at a distance of approximately 30 cm was 
used for illumination. The illumination zenith angle was adjusted to 30 degrees. The optical head of 
the spectroradiometer was mounted on a tripod in nadir position at a distance of 10 cm to the 
sample. 

Absolute bi-directional reflectance spectra were obtained by multiplying the raw reflectance spectra 
by the certified reflectivity of the Spectralon panel. No data pre-processing was applied; however, 
only the spectral range from 0.4 to 2.4 µm was used for further study to exclude the noisy parts of 
the spectra. 

Organic carbon and inorganic carbon in soils have a strong influence on the soil reflectance in the 
visible domain (e.g. iv). In general, with increasing organic matter content soil reflectance 
decreases in the wavelength range 0.4 – 2.5 µm (v). An increase of reflectance with rising contents 
of inorganic carbon often is observed. Therefore, it was decided to include colour information in the 
spectral analysis. For the calculation of colour parameters, the reflectance measurements were 
converted to trichromatic specifications, and then expressed in terms of the „Commission 
Internationale de ´Eclairage [C.I.E.]“ colour notation (Y, x, y) of 1931. In this colour system the 
colour intensity is characterised by the tristimulus value “Y” (luminance), which represents the 
brightness of colour while “x” and “y” are the chromaticity coordinates (vi, vii). The C.I.E. colour 
coordinates were already found to contain substantial information for spectroradiometric detection 
of organic and inorganic carbon (viii, ix). 

Furthermore, carbonates are known to show a diagnostic vibrational absorption band in the Near 
Infrared at 2.30 - 2.35 µm (x, xi). Hence, individual spectral features (maximum absorption depth, 

 
Figure 2: The location of the five different sampling transects relative to the HyMap data. Each 
transect is shown in a different colour. 
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absorption width and area integrals) for this absorption band were derived from the measured 
reflectance spectra using the continuum removal approach. 

The C.I.E. colour coordinates and the derived absorption features were used to build multivariate 
linear regression models for the prediction of the above mentioned soil chemical properties from 
spectral reflectance. The performance of several models based on different linear combinations of 
the derived spectral features was first tested by cross validating the results. For each of the two 
soil properties to be estimated, one regression model was finally accepted and cross-validated 
according to the leave-one-out method. The coefficient of determination (r²) and the root mean 
squared error (RMSE) were calculated to assess the prediction accuracy. Additionally, the relative 
root mean square error (rRMSE) was determined which is defined as the quotient of the RMSE 
and the mean of all samples. To assure the adequacy of the implemented regression model a t-
test was applied to see whether the mean of the residuals was zero. Normal distribution of the 
residuals was verified by a Kolmogorov-Smirnov-test and auto-correlation of model residuals was 
ruled out by a Durbin-Watson-test. Subsequently, the final regression models were up-scaled to 
the hyperspectral image data of the HyMap sensor acquired for the test site. 

Pre-processing of HyMap data 
The geometric rectification of two HyMap images acquired for the test site on 29th June 2000 was 
accomplished using the parametric geocoding approach implemented by the PARGE software 
package (xii). The software uses navigation data collected during the flight to reconstruct the 
geometric properties of the acquired images. The navigational parameters collected during scene 
acquisition and used by the PARGE application were the aircraft's position, roll and pitch angles, 
as well as its heading and altitude above ground. One set of parameters was recorded for every 
image line scanned. The dynamics of both the collection of image and navigation data in combina-
tion with the uncertainties in the synchronization of both processes may cause inaccuracies in the 
rectified images. In the PARGE geocoding process, the navigation data are iteratively adjusted for 
these inaccuracies by using a set of ground control points. The software also uses a digital eleva-
tion model of the imaged area to account for terrain induced image distortions. To geocode the two 
images used in this work a total of 47 ground control points was collected by GPS measurements 
in the field. After geocoding, the images were resampled to a pixel size of 6 m, which is the 
approximate ground instantaneous field of view at nadir according to the aircrafts mean altitude 
above ground when acquiring the images. The positional accuracy of the individual pixel centres in 
the resulting products was estimated to be within about 7m in easting and northing for both 
images. The estimates are based on the residual errors after geocoding, as there was no 
additional set of ground control points available to independently validate the results. 

After the geocoding of the individual HyMap scenes, the resulting images have been merged to 
produce one single image of larger coverage for further analysis. In the PARGE application, the 
coordinate system of the geocoded image product is determined by the properties of the digital 
elevation model used in the geocoding process. Since the subset of the elevation model was 
chosen large enough to cover both scenes and the same subset was used to geocode both 
images, the scenes could be merged by a simple masking operation without further resampling. 
The one of the two overlapping scenes acquired first showed a slightly better radiometric quality 
and was chosen as the base image. Merging the two scenes was accomplished by simply filling 
the raster of the first geocoded image with the grey values from the second image not overlapping 
with the first one. 

Radiance calibration and atmospheric correction of the HyMap data acquired in the Guadalentin 
site was performed with the AtCPro radiative transfer code (xiii, xiv). The approach is based on the 
formulation of radiative transfer by Tanré et al. (xv); it provides corrections for atmospheric absorp-
tion, scattering and pixel adjacency effects, where diffusion and absorption processes are 
assumed to be independent and multiple scattering is accounted for according to Sobolev's 
approximate solution (xvi). Atmospheric extinction processes in the reflective optical domain are 
treated as a function of sensor and terrain altitude, and the absorbing gases (H2O, O3, CO2, O2, 
CH4) are represented according to MODTRAN (xvii) gaseous transmittance data. The code allows 
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both, simulating atmospheric conditions and removing atmospheric distortions from radiance-
calibrated remote sensing imagery. HyMap data have first been re-calibrated in flight by applying 
AtCPro in the forward mode for simulating the spectral at-sensor radiance for seven reflectance 
spectra from homogeneous reference surfaces in the field. Since no atmospheric measurements 
were taken during image acquisition, aerosol parameters and water vapour concentration had to 
be determined through an iterative approach with regard to the available ground reflectance data; 
finally, aerosol scattering was parameterised equivalent to a horizontal visibility of appr. 50 km, 
water vapour was estimated from the HyMap imagery itself according to an approach described in 
Hill & Mader (xviii). Using these estimated in-flight gain and offset coefficients the atmospheric 
correction produced high-quality reflectance spectra which permit a detailed analysis of the HyMap 
imagery. 

Spectral unmixing analysis (e.g. (xix, xx) was used to determine fractions of vegetation, crop 
residuals and soil. Based on these results a soil mask was generated by determination of a 
threshold value to include only bare soil in the further analysis. 

RESULTS AND DISCUSSION 
Soil development is limited in the study area due to the relatively small average rainfall amount. 
The resulting shallow soils are strongly influenced by the characteristics of the bedrock material. 
Consequently, high concentrations of inorganic carbon were determined by chemical analysis 
ranging from less than 7.5 percent to more ten percent in the maximum. Furthermore, the semi-
arid climatic conditions restrict vegetation growth and the production of organic matter. Hence, the 
soil samples are characterised by relatively low organic carbon concentrations which are below 0.7 
percent at the average. Descriptive statistics of the investigated soil samples are summarized in 
Table 1. 

For both, organic (Corg) and inorganic (Cinorg) carbon a statistically significant multivariate prediction 
model could be established from the laboratory reflectance measurements by using different 
combinations of the features derived from the measured spectra. In case of organic carbon the 
samples from one transect were excluded from further analysis. 

For organic carbon, the following significant relationship was found: 

Corg = 13.493-31.706*y-0.034*Y, 

where Corg is given in percent, y is the CIE “y” chromaticity coordinate and Y represents the CIE 
luminance (brightness). This regression model explained cross-validated about 80 percent of the 
variance of soil organic carbon (r²cv = 0.794; RMSEcv = 0.110). 

The final model for prediction inorganic carbon from absorption parameters and C.I.E. colour 
coordinates results in a rcv² of 0.715: 

Cinorg = 43.12+44.535*x-142.246*y+0.480*a, 

where Cinorg is given in percent, x is the CIE “x” chromaticity coordinate, y is the CIE “y” chromaticity 
coordinate, and a represents the total area of the diagnostic carbonate absorption feature centred 
at 2330 nm. This model performs well which is also indicated by a relatively low cross-validated 
root mean squared error of 0.609 and a low rRMSEcv of 0.067. 

Table 1: Descriptive statistics of organic carbon content of the soil samples for the study sites 

 n Min Max Mean S.D. 
Corg [%] 61 0.24 1.13 0.67 0.25 
Cinorg [%] 77 7.43 10.24 9.11 0.70 
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Figure 3 shows the cross validation results for the individual prediction models using the leave-
one-out (jack-knifing) method. The linear regressions between the measured and modelled data 
for both soil variables show only a small offset and a gradient of almost unity. This near 1:1-
relationship is an indication of the good performance of both models. 

For the spatially distributed prediction of soil organic and inorganic carbon contents, the spectral 
features used as parameters in the two prediction equations were computed from the spectral pixel 
vectors of the Guadalentin HyMap image. Thus, the organic and inorganic carbon content could be 
estimated for each pixel in the HyMap dataset by application of the respective prediction equation. 
The predicted percentages of organic and inorganic carbon for a subset of the HyMap image are 
shown in Figure 4. 

Generally, the highest percentages of organic carbon in the imaged area are found in sinks and at 
valley bottoms, whereas low organic carbon contents occur on the ridges. In opposition to organic 
carbon, inorganic carbon contents are high in the vicinity of ridges and relatively low in sinks and at 
the bottom of valleys. Higher organic carbon concentrations at valley bottoms and in sinks are due 
to more favourable water supply in comparison to the ridges. Subsequently, conditions are more 
suitable for vegetation growth and organic material supply at the valley bottoms. On the same time 
the removal of carbonate is mainly influenced by the available amount of water which is indicated 
by lower inorganic carbon concentrations in these areas. At the ridges, less favourable water 
conditions limit soil development. Field survey indicated substantial surface flow at high intensity 
rainfall events. As a consequence less developed or degraded soils are more influenced by 
underlying bedrock material and hence, these areas are characterised by higher concentrations of 
inorganic carbon. 

The value ranges obtained from the image data agree well with those of the laboratory samples, 
which are 0.24-1.13 percent for organic carbon and 7.43-10.24 percent for inorganic carbon 
(compare Figure 4; see also Table 1). To assess the accuracy of the spatially distributed 
estimates, the organic and inorganic carbon values obtained from the image data were validated 
with reference to the soil samples taken in the field. To compensate for up-scaling effects like 
uncertainties in sample location with respect to the image data, a 3x3 window of pixels centred on 
the coordinates of each field sample location was considered in the validation process. The 
validation was performed using the estimated pixel value within a window that best matched the 

 

Figure 3: The results obtained by cross validating the individual prediction models for organic (left 
side) and inorganic (right side) carbon. The red line indicates the linear regression between the 
measured and modelled data for each variable. 
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laboratory measurement of the corresponding sample collected in the field. The results of the 
validation step are illustrated in figure 5. For both variables, offset and gradient of the regression 
between the modelled and measured data are slightly higher compared to the validation results for 
the laboratory reflectance measurements, but still close to a linear 1:1-relationship. However, it has 
to be considered that this validation approach tends to overestimate the model fit. 

 

 

Figure 4: Predicted percentages of organic (left side) and inorganic (right side) carbon for a spatial 
subset of the Guadalentin HyMap image. The black areas represent vegetated surfaces that were 
excluded from the analysis. 

 

 

 
Figure 5: Validation results for the organic (left side) and inorganic (right side) carbon contents 
estimated from the HyMap image data. The red lines show the linear regression between the 
modelled and measured values. The dashed lines indicate a linear 1:1-relationship. 



Proceedings 5th EARSeL Workshop on Imaging Spectroscopy. Bruges, Belgium, April 23-25 2007 8 

It can be concluded that the multivariate regression models applied in this study allow sound esti-
mates of the spatial distribution of soil organic and inorganic carbon concentrations within the test 
site. The spatially distributed estimates obtained by up-scaling the regression models to the hyper-
spectral image data follow distinct spatial patterns and thus reflect the local physio-geographic 
conditions found in the investigated area. 

CONCLUSIONS 

Organic carbon concentrations were predicted from laboratory reflectance measurements with high 
accuracy (r²cv > 0.79) based on the C.I.E. chromaticity value y and the C.I.E. tristimulus value Y 
(luminance). Inorganic carbon was estimated from laboratory reflectance measurements with an 
accuracy of r²cv > 0.71 considering the normalized absorption area of the carbonate absorption 
feature at 2.33 µm and the C.I.E. chromaticity value x and y. The up-scaling to HyMap data was 
successful and reflected the spatial pattern of organic and inorganic carbon concentrations in the 
investigated area very well. Estimates from HyMap data were verified for organic carbon (r² > 0.65) 
and inorganic carbon (r² > 0.73). Finally it is assumed that the introduced approach is applicable to 
other semi-arid and arid regions with similar physio-geographic conditions. 
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