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Introduction ESEs in EMAC

The polar winter stratopause is controlled by
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is rebuilt at lower mesospheric heights and the V% w0 20 e b0 -k 0 6

stratopause re-establishes at these heights. Figure 1: ESE composit for REF2000 simulation. Green Figure 2: As Fig.1, but for SSW-only composit.

hatching: area statistically significantly different from SSW-
only events at a 95% confidence level.

Model and Method e State of the polar vortex before events: polar vortex in climatological state before ESEs,

The simulations were performed with the but weakened before SSW-only events
ECHAM/MESSy  Atmospheric ~ Chemistry e Tropospheric forcing: weaker but more persistent forcing by PWs for ESEs.
(EMAC) model [2| in T42L39 configuration

. e Evolution of temperature and wind structures during events: slower downward prop-
with the model top at 0.01 hPa.

agation of structures, longer reversal of zonal-mean zonal wind in the lower stratosphere (LS)

simulation || GHGs | ODSs | years for ESEs;
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FSFs l 17 Figure 3: As Fig. 1, but for anomalies from the Figure 4: As Fig. 3, but for ESEs in the REF2095 run.
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We have shown that the EMAC CCM is able cays cays

e Evolution of temperature and wind L.
. P o Figure 5: Composite daily heat fluz anomaly [K/ms] av-
structures durlng events: positive tem- erage between 45°and 75°N at 100 hPa around the date

r r nomali rior ESE on _of the ESE for (a) the REF2000 and (b) the REF2095
e ature anomales PO to ESE onset de run. Thick lines: ESE values are significantly different from

scend faster and ESEs are shorter SSW-only values at 95% confidence level.

to reproduce the main characteristics of ESEs.
Persistent tropospheric forcing is more relevant
for ESEs than its wavenumber decomposition.
ESEs are projected to be more frequent and per-
sist for a shorter period of time at the end of the

e Strong easterlies affect NGW filtering resulting in a weaker and short anomalous eastward
215t century.

circulation in the USLM — stratopause descends to a lower altitude
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