

Effect of future increase in nitrous oxide on stratospheric ozone

S. Meul, S. Oberländer-Hayn, U. Langematz

Freie Universität Berlin, Berlin, Germany

Introduction

With the successful regulation of halogen containing ozone depleting substances (ODS) in the Montreal Protocol and its amendments, today substances (OUS) in the Montreal Protocol and its amendments, today nitrous oxide (N_2O) is the most important ozone depleting species emitted by anthropogenic activity (e.g., Portmann et al., 2012). The future increase of carbon dioxide (CO_2) and methane (CH_3), however, will have a mitigating effect on the ozone depleting potential of N_2O (e.g., Stolarsk et al., 2015; see also box on the right). Thus, the future ozone depletion due to N_2O strongly depends on the emission scenarios of CO_2 and CH_4 .

In our study we quantify the contribution from $N_2\text{O}$ to ozone loss and thus, the future potential of N₂O to harm the stratospheric ozone layer under the extreme RCP8.5 scenario at the end of the 21st century when the stratospheric halogen loading will have returned to pre-1980 levels. Based on the analysis of multi-year simulations with the chemistry-climate model EMAC we examine the impact of increasing N₂O on ozone and the feedbacks with greenhouse gas (GHG) induced temperature and circulation changes as well as $\mathrm{CH_4}$ induced changes in stratospheric chemistry. Sources and sinks of NO., in the

Source: • $N_2O + O^1D \rightarrow 2 NO$

N + NO reaction rate increases with lower temperature because the concentration of N atoms is increased (N+O₂ \rightarrow NO+O reaction rate decreased with

Model & Experiments

- Chemistry-climate model EMAC v2.50.7 (ECHAM/MESSy Atmospheric chemistry; Jöckel et al., 2015, GMDD) T42L47 resolution (up to 0.01 hPa)
- Time slice simulations for the years 2000 and 2100 Integration over 40 years (+5 years spin-up) Boundary conditions (overview in Table 1):
- > Future GHG levels: RCP8.5 scenario
- (Meinshausen et al., 2011) Future ODS concentrations: A1 scenario (WMO, 2007)
- Pruture DUS concentrations: All scenario (www., 200).
 Prescribed fields for sea surface temperature (SST) and sea ice concentration (SiC) from simulations with the MPL-ESM (Schmidt et al., 2013)
 Nudged QBO, no solar variability
- two transient simulations (1960-2100, EMAC v1.10): RCP6.0 and RCP8.5

Simulation	CO2	CH4	N20	ODS	Trop. precursor	SST/ SIC
REF2000	2000	2000	2000	2000	2000	1995- 2004
REF2100	2100	2100	2100	2100	2100	2095- 2104
N2O_2100	2000	2000	2100	2100	2000	1995- 2004
CH4_2100	2000	2100	2000	2100	2000	1995- 2004
GHG_2100	2100	2100	2100	2000	2000	2095- 2104
ODS_2100	2000	2000	2000	2100	2000	1995- 2004

Table 1 Overview and boundary conditions of the simulations

Future NO_v changes

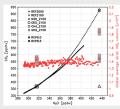
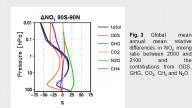



Fig. 1 N₂O and CO₂ boundary conditions for the timestice and transient simulations (black symbols) and the relation between surface, so and stratospheric NO₂ column in 10¹⁶ molecules/cm² (red symbols, y-axis on the right, gray shading indicates ±10).

Fig. 2 Change in the stratospheric NO $_{y}$ column between 2000 and 2100 and the contribution from ODSs and GHGs. The GHG effect is separated into the contribution from N $_{2}$ O, CH $_{4}$

The future increase of N₂O emissions affects the amount of inorganic nitrogen (NO $_{\rm y}$ = NO+NO $_{\rm 2}$ +reservoir species) in the stratosphere (Fig. 1, 2, 3).

- The NO_{γ} increase caused by a certain N_2O increase depends on the concentration of the GHGs CO_2 and CH_4 (Fig. 2. 3)
- 37% higher N_2O levels lead to an increase of stratospheric NO_ν by 28% if the CO_2 and CH_4 are not changed (= year 2000 level; Fig. 1 and 2) .
- Accounting for the increase of CO2 and CH4 that is projected for the RCP8.5 scenario, the increase of stratospheric NO_y is reduced to less than 1%.
- The largest impact on the $\rm NO_y$ change is found for $\rm CO_2$ while $\rm CH_4$ mainly affects $\rm NO_y$ in the mesosphere.

Future ozone changes

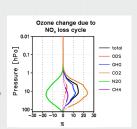


Fig. 4 Global mean annual mean relative differences in ozone mixing ratio due to changes of the loss rate in the catalytic NO_x cycle between 2000 and 2100 and the contributions from ODS, GHG, CO₂, CH₄ and

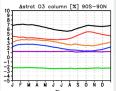


Fig. 5 Annual cycle of global mean relative differences in the stratospheric ozone column between 2000 and 2100 and the contributions from ODS, GHG, CO₂, CH₄ and N₂O.

- The increase of N₂O emissions and the concomitant increase in stratospheric NO_y (under year 2000 conditions for CO₂ and CH₄) leads to a larger loss rate in the catalytic NO_x-cycle and an ozone decrease by up to 18% (Fig. 4).
- The stratospheric ozone column is reduced by 2% throughout the year (Fig. 5).
- No other species emitted by anthropogenic activity (considered in this study) causes an ozone decrease at the end of the 21st century.
- Largest strat. ozone column increase due to ODSs (4-6%) and ${\rm CO}_2$ (3-4%).

Sensitivity of NO_v changes to CO₂

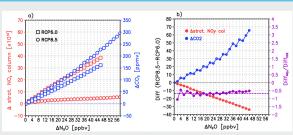


Fig. 6 a) Change of stratospheric NO₂ column in 10¹³ molecules/cm² (red) and CO₂ mixing ratio in ppmv (blue; right y-axis) for a given N₂O increase thins of 2 ppbv, starting in the year 2040) in the transient simulations RCP6 0 (square) and RCP6.5 (circle). b) Differences between the RCP6 0 and RCP8.5 runs in the NO₂ column (red) and CO₂ (blue) change per N₂O increase. The purple ine shows the quotiont between the red and the blue line (y-axis on the right). The purple dashed line represents the quotient but derived from the timestice simulations.

- To analyse the effect of different CO₂ levels on stratospheric NO_y with identical N_2O changes, we use the transient simulations RCP6.0 and RCP8.5.
- By binning the changes in NO_y and CO_2 in both simulations to equal changes in N_2O , the sensitivity of NO_y increase to CO_2 changes is analysed (Fig. 6a).
- The difference between the RCP6.0 and RCP8.5 runs (Fig. 6b) shows that the larger the difference between CO, the larger the difference in the stratospheric NO, column: A N₂O increase of 40 ppbv causes a 7 times larger increase in stratospheric NO, if the CO₂ increase is 30% smaller.
- The relationship between ${\rm CO_2}$ and ${\rm NO_y}$ differences is not constant (from ~-1 to -0.5) indicating a nonlinear behaviour or the possible influence of other drivers (e.g., differences in the chlorine loading).

Assuming linear relation between CO2, temperature and

 $\Delta NOy = \Delta N2O[ppbv] \cdot S_{N2O} + \Delta CO2[ppmv] \cdot S_{CO2}$ with S_{N2O} and S_{CO2} representing sensitivity parameters for the changes.

 $\rm S_{\rm N2O}$ is derived from the timeslice simulations for $\rm N_2O$ increase only (see Fig. 1):

 $S_{N2O} = \frac{\Delta NOy}{\Delta N2O} = \frac{0.399 \cdot 10^{16}}{119} \frac{molec/cm^2}{ppbv} = 3.35 \cdot 10^{13} \frac{molec/cm^2}{ppbv}$

 \succ S_{CO2} represents the quotient in Fig. 6 and is found to be

 $S_{CO2} = \frac{Diff_{NOy}}{Diff_{CO2}} = -0.707 \cdot 10^{13} \frac{molec/cm^2}{ppmv}$

in the timeslice simulations

Conclusions

In this study we have analysed the effect of increasing N_tO emissions on stratospheric NO_{γ} and ozone in simulations with the CCM EMAC. As shown in previous studies the NO_{γ} change resulting from increased N_2O strongly depends on the level of GHGs, in particular CO_2 . We find that NO_{γ} is increased by 28% which leads to acone reduction by up to 18% due to an enhanced catalytic NO_{γ} cycle in the middle stratosphere if $NO_{\gamma}O$ emissions rise following the RCP8.5 scenario for the year 2100 but CO_2 and CH_1 levels are fixed at the year 2000. The corresponding decrease of stratospheric column ozone is 2%. Accounting for increasing CO_2 and CH_4 the $NO_{\gamma}O$ increase is considerably reduced due to stratospheric cooling and a more effective $NO_{\gamma}O$ loss. All in all, the $NO_{\gamma}O$ induced stratospheric ozone loss is overcompensated by the effect of the other GHGs.

The sensitivity of NO, to CO₂ changes is estimated based on the timeslice simulations and tested with the help of The sensitivity of NO, to CO₂ changes is estimated based on the timeslice simulations and tested with the help transient simulations under the RCP6.0 and RCP8.5 scenarios. We introduce a sensitivity parameter for the effect of CO₂ changes on NO₂, which is constant when derived from the timeslice simulations (by definition) and has slight slope when derived from the transient simulations. This indicates either nonlinearities or the impact of other processes affecting stratospheric NO₂. However, this provides a rough estimation of the stratospheric NO, change for potential N₂O and CO₂ changes: For a N₂O increase as projected in the RCP8.5 scenario but a smaller CO₂ increase (as in RCP6.0) the resulting increase (as in RCP6.0) the resulting increase of stratospheric NO₂ is more than 60 times larger compared to the increase (with the RCP8.5 CO₂ increase.

References & Acknowledgments

Portmann, R. W., J. S. Daniel and A. R. Ravishankara, Stratospheric ozone depletion due to nitrous oxide: influence of other gases, Phil. Trans. Soc. B, 367, 1256-1264, 2012.

Stolarski, R. S., A. R. Douglass, L. Oman and D. W. Waugh, Impact of future nitrous oxide and cabon dioxide emissions on the stratospheric ozone layer, Environ. Res. Lett., 10, 034011, 2015.

Jöckel, P. et al., Earth System Chemistry Integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy, version 2.51), Geosci. Model Dev. Discuss., 2015.

Meinshausen et al., The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300, Climate Change (Special Issue), 2011.

World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2006, Global Research and Monitoring Project-Report Nr. 50, 572 pp., Geneva, Switzerland, 2007.

chmidt et al., Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model, J. Adv. Earth Syst., 5, 98-116, 2013.

This work has been funded by the DFG within the Research Unit SHARP-OCF. We would like to thank the North-German Supercomputing Alliance (HLRN) and the ECMWF computing center in Reading for computing time and support.