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Figure 8. Filling factors of the plage and bright plage (a), and penumbra and umbra (b) as
a function of time. The filling factors are extracted from PSPT images.

strong decrease of the irradiance, which can therefore be just an artifact caused
by noise. To take this into account we produced two di↵erent datasets of the
LYRA data. Both of them are presented in Fig. 9. LYRA version 1 dataset
was produced taking all data into account, while LYRA version 2 dataset was
produced excluding two aforementioned intervals from the analysis and assuming
that the solar irradiance did not change during these intervals. The di↵erence
between these datasets indicates the accuracy of our analysis.

3. Modeling with COSI

In this section we calculate the synthetic profile of the spectral solar irradiance
variability for the period analyzed in Sect. 2. We follow a well-developed ap-
proach (see e.g. Foukal and Lean, 1988, Fligge, Solanki, and Unruh, 2000, Krivova
and Solanki, 2008, Domingo et al., 2009) and calculate the time-dependent solar
spectrum as a sum of the spectra from the quiet Sun and di↵erent active features.
We employ a 4-component model which treats separately contributions from the
quiet Sun, sunspots, active network and plage areas. According to this model
the solar spectrum I(�, t) can be written as

I(�, t) =
X

k

(↵QS(µk, t)IQS(�, µk) + ↵S(µk, t)IS(�, µk)+

+ ↵AN(µk, t)IAN(�, µk) + ↵P(µk, t)IP(�, µk)) , (1)
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a function of time. The filling factors are extracted from PSPT images.

strong decrease of the irradiance, which can therefore be just an artifact caused
by noise. To take this into account we produced two di↵erent datasets of the
LYRA data. Both of them are presented in Fig. 9. LYRA version 1 dataset
was produced taking all data into account, while LYRA version 2 dataset was
produced excluding two aforementioned intervals from the analysis and assuming
that the solar irradiance did not change during these intervals. The di↵erence
between these datasets indicates the accuracy of our analysis.

3. Modeling with COSI

In this section we calculate the synthetic profile of the spectral solar irradiance
variability for the period analyzed in Sect. 2. We follow a well-developed ap-
proach (see e.g. Foukal and Lean, 1988, Fligge, Solanki, and Unruh, 2000, Krivova
and Solanki, 2008, Domingo et al., 2009) and calculate the time-dependent solar
spectrum as a sum of the spectra from the quiet Sun and di↵erent active features.
We employ a 4-component model which treats separately contributions from the
quiet Sun, sunspots, active network and plage areas. According to this model
the solar spectrum I(�, t) can be written as

I(�, t) =
X

k

(↵QS(µk, t)IQS(�, µk) + ↵S(µk, t)IS(�, µk)+

+ ↵AN(µk, t)IAN(�, µk) + ↵P(µk, t)IP(�, µk)) , (1)
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An influence of solar spectral variations on radiative
forcing of climate
Joanna D. Haigh1, Ann R. Winning1, Ralf Toumi1 & Jerald W. Harder2

The thermal structure and composition of the atmosphere is deter-
mined fundamentally by the incoming solar irradiance. Radiation
at ultraviolet wavelengths dissociates atmospheric molecules, ini-
tiating chains of chemical reactions—specifically those producing
stratospheric ozone—and providing the major source of heating
for the middle atmosphere, while radiation at visible and near-
infrared wavelengths mainly reaches and warms the lower atmo-
sphere and the Earth’s surface1. Thus the spectral composition of
solar radiation is crucial in determining atmospheric structure, as
well as surface temperature, and it follows that the response of the
atmosphere to variations in solar irradiance depends on the spec-
trum2. Daily measurements of the solar spectrum between 0.2 mm
and 2.4 mm, made by the Spectral Irradiance Monitor (SIM) instru-
ment on the Solar Radiation and Climate Experiment (SORCE)
satellite3 since April 2004, have revealed4 that over this declining
phase of the solar cycle there was a four to six times larger decline in
ultraviolet than would have been predicted on the basis of our
previous understanding. This reduction was partially compensated
in the total solar output by an increase in radiation at visible wave-
lengths. Here we show that these spectral changes appear to have
led to a significant decline from 2004 to 2007 in stratospheric
ozone below an altitude of 45 km, with an increase above this
altitude. Our results, simulated with a radiative-photochemical
model, are consistent with contemporaneous measurements of
ozone from the Aura-MLS satellite, although the short time period
makes precise attribution to solar effects difficult. We also show,
using the SIM data, that solar radiative forcing of surface climate is
out of phase with solar activity. Currently there is insufficient
observational evidence to validate the spectral variations observed
by SIM, or to fully characterize other solar cycles, but our findings
raise the possibility that the effects of solar variability on temper-
ature throughout the atmosphere may be contrary to current
expectations.

The peak of the most recent ‘11-year’ solar cycle (identified as num-
ber 23) occurred 2000–2002, and from then until about December
2009 the Sun’s activity declined. Figure 1 shows the difference between
2004 and 2007 in solar spectral irradiance measured by SIM. This is
quite unlike that predicted by multi-component empirical models,
based on activity indicators such as sunspot number and area, as
exemplified by that of Lean5 (also shown in Fig. 1). The SIM data
indicate a decline in ultraviolet from 2004 to 2007 that is a factor of
4 to 6 larger than in the Lean data and an increase in visible radiation,
compared with a small decline in the Lean data. Other empirical mod-
els6,7 show larger-amplitude variations in the near-ultraviolet than does
the Lean model but none reflect the behaviour apparent in the SIM
data. Also shown in Fig. 1, for wavelengths 116–290 nm, are independent
measurements made by the Solar Stellar Irradiance Comparison
Experiment (SOLSTICE) instrument on SORCE. The data from SIM
and SOLSTICE both indicate substantially more ultraviolet variability
than does the Lean model. SIM calibration, and instrument comparisons,
are discussed in detail in ref. 8.

To investigate how these very different spectral changes might affect
the stratosphere, experiments have been carried out using a two-
dimensional (latitude-height) radiative-chemical-transport model of
the atmosphere9. This model includes detailed representations of photo-
chemistry and radiative transfer and has been used in many studies
involving radiation-chemistry interactions10,11. (See Supplementary
Information for further details.) This type of model produces realistic
simulations of the upper stratosphere (above about 25 km) but is less
reliable at lower altitudes where photochemical time constants are
longer and a more accurate representation of transport processes is
required. The results below come from four model runs using solar
spectra derived from the SIM measurements (with SOLSTICE data for
wavelengths less than 200 nm) and those produced by the Lean model,
each for both 2004 and 2007.

In Fig. 2 we present latitude–height maps of the difference between
2004 and 2007 in December ozone concentrations. The Lean spectral
data produce a broad structure of ozone concentrations greater in 2004
than in 2007, with maximum values of around 0.8% near 40 km,
whereas the SIM data produce a peak enhancement of over 2% in low
latitudes around 35 km, along with significant reductions above 45 km.
The predicted temperature differences (Supplementary Fig. 1) are also
very different, with the Lean data set showing temperatures 0.3–0.4 K
greater in 2004 than in 2007 at the top of the model domain, whereas the
SIM data set produces a peak warming of 1.8 K at the summer polar
stratopause. These temperature differences are qualitatively similar to,
but about 50% larger than, those estimated by ref. 12 with an idealized
forcing in a full climate model, possibly owing to the broader spectral

1Blackett Laboratory, Imperial College London, London SW7 2AZ, UK. 2Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303-7814, USA.
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Figure 1 | Difference in solar spectrum between April 2004 and November
2007. The difference (2004–2007) in solar spectral irradiance (W m22 nm21)
derived from SIM data4 (in blue), SOLSTICE data8 (in red) and from the Lean
model5 (in black). Different scales are used for values at wavelengths less and
more than 242 nm (see left and right axes respectively).
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Figure 8. Filling factors of the plage and bright plage (a), and penumbra and umbra (b) as
a function of time. The filling factors are extracted from PSPT images.

strong decrease of the irradiance, which can therefore be just an artifact caused
by noise. To take this into account we produced two di↵erent datasets of the
LYRA data. Both of them are presented in Fig. 9. LYRA version 1 dataset
was produced taking all data into account, while LYRA version 2 dataset was
produced excluding two aforementioned intervals from the analysis and assuming
that the solar irradiance did not change during these intervals. The di↵erence
between these datasets indicates the accuracy of our analysis.

3. Modeling with COSI

In this section we calculate the synthetic profile of the spectral solar irradiance
variability for the period analyzed in Sect. 2. We follow a well-developed ap-
proach (see e.g. Foukal and Lean, 1988, Fligge, Solanki, and Unruh, 2000, Krivova
and Solanki, 2008, Domingo et al., 2009) and calculate the time-dependent solar
spectrum as a sum of the spectra from the quiet Sun and di↵erent active features.
We employ a 4-component model which treats separately contributions from the
quiet Sun, sunspots, active network and plage areas. According to this model
the solar spectrum I(�, t) can be written as

I(�, t) =
X

k

(↵QS(µk, t)IQS(�, µk) + ↵S(µk, t)IS(�, µk)+

+ ↵AN(µk, t)IAN(�, µk) + ↵P(µk, t)IP(�, µk)) , (1)
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The thermal structure and composition of the atmosphere is deter-
mined fundamentally by the incoming solar irradiance. Radiation
at ultraviolet wavelengths dissociates atmospheric molecules, ini-
tiating chains of chemical reactions—specifically those producing
stratospheric ozone—and providing the major source of heating
for the middle atmosphere, while radiation at visible and near-
infrared wavelengths mainly reaches and warms the lower atmo-
sphere and the Earth’s surface1. Thus the spectral composition of
solar radiation is crucial in determining atmospheric structure, as
well as surface temperature, and it follows that the response of the
atmosphere to variations in solar irradiance depends on the spec-
trum2. Daily measurements of the solar spectrum between 0.2 mm
and 2.4 mm, made by the Spectral Irradiance Monitor (SIM) instru-
ment on the Solar Radiation and Climate Experiment (SORCE)
satellite3 since April 2004, have revealed4 that over this declining
phase of the solar cycle there was a four to six times larger decline in
ultraviolet than would have been predicted on the basis of our
previous understanding. This reduction was partially compensated
in the total solar output by an increase in radiation at visible wave-
lengths. Here we show that these spectral changes appear to have
led to a significant decline from 2004 to 2007 in stratospheric
ozone below an altitude of 45 km, with an increase above this
altitude. Our results, simulated with a radiative-photochemical
model, are consistent with contemporaneous measurements of
ozone from the Aura-MLS satellite, although the short time period
makes precise attribution to solar effects difficult. We also show,
using the SIM data, that solar radiative forcing of surface climate is
out of phase with solar activity. Currently there is insufficient
observational evidence to validate the spectral variations observed
by SIM, or to fully characterize other solar cycles, but our findings
raise the possibility that the effects of solar variability on temper-
ature throughout the atmosphere may be contrary to current
expectations.

The peak of the most recent ‘11-year’ solar cycle (identified as num-
ber 23) occurred 2000–2002, and from then until about December
2009 the Sun’s activity declined. Figure 1 shows the difference between
2004 and 2007 in solar spectral irradiance measured by SIM. This is
quite unlike that predicted by multi-component empirical models,
based on activity indicators such as sunspot number and area, as
exemplified by that of Lean5 (also shown in Fig. 1). The SIM data
indicate a decline in ultraviolet from 2004 to 2007 that is a factor of
4 to 6 larger than in the Lean data and an increase in visible radiation,
compared with a small decline in the Lean data. Other empirical mod-
els6,7 show larger-amplitude variations in the near-ultraviolet than does
the Lean model but none reflect the behaviour apparent in the SIM
data. Also shown in Fig. 1, for wavelengths 116–290 nm, are independent
measurements made by the Solar Stellar Irradiance Comparison
Experiment (SOLSTICE) instrument on SORCE. The data from SIM
and SOLSTICE both indicate substantially more ultraviolet variability
than does the Lean model. SIM calibration, and instrument comparisons,
are discussed in detail in ref. 8.

To investigate how these very different spectral changes might affect
the stratosphere, experiments have been carried out using a two-
dimensional (latitude-height) radiative-chemical-transport model of
the atmosphere9. This model includes detailed representations of photo-
chemistry and radiative transfer and has been used in many studies
involving radiation-chemistry interactions10,11. (See Supplementary
Information for further details.) This type of model produces realistic
simulations of the upper stratosphere (above about 25 km) but is less
reliable at lower altitudes where photochemical time constants are
longer and a more accurate representation of transport processes is
required. The results below come from four model runs using solar
spectra derived from the SIM measurements (with SOLSTICE data for
wavelengths less than 200 nm) and those produced by the Lean model,
each for both 2004 and 2007.

In Fig. 2 we present latitude–height maps of the difference between
2004 and 2007 in December ozone concentrations. The Lean spectral
data produce a broad structure of ozone concentrations greater in 2004
than in 2007, with maximum values of around 0.8% near 40 km,
whereas the SIM data produce a peak enhancement of over 2% in low
latitudes around 35 km, along with significant reductions above 45 km.
The predicted temperature differences (Supplementary Fig. 1) are also
very different, with the Lean data set showing temperatures 0.3–0.4 K
greater in 2004 than in 2007 at the top of the model domain, whereas the
SIM data set produces a peak warming of 1.8 K at the summer polar
stratopause. These temperature differences are qualitatively similar to,
but about 50% larger than, those estimated by ref. 12 with an idealized
forcing in a full climate model, possibly owing to the broader spectral

1Blackett Laboratory, Imperial College London, London SW7 2AZ, UK. 2Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303-7814, USA.
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Figure 1 | Difference in solar spectrum between April 2004 and November
2007. The difference (2004–2007) in solar spectral irradiance (W m22 nm21)
derived from SIM data4 (in blue), SOLSTICE data8 (in red) and from the Lean
model5 (in black). Different scales are used for values at wavelengths less and
more than 242 nm (see left and right axes respectively).
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Center-to-limb variations of the solar brightness

Solar rotational cycle as observed by LYRA

(a)

(d)(c)

(b)

Figure 1. SOHO MDI continuum images for January 8 (a), January 11 (b), January 14 (c),
January 17 (d) of 2010. For better clarity the contrasts between sunspot, plage and quiet Sun
were artificially increased.

2. Analysis of the LYRA data

The sunspot group surrounded by plage region appeared on the solar disk on
January 7, 2010 and disappeared on January 20, 2010. The transit is shown
on Fig. 1. One can expect that the presence of the active regions on the solar
disk will modify the solar irradiance (Fligge, Solanki, and Unruh, 2000). In this
section we present the method which was used to extract these modifications
from the LYRA data.

The level 3 calibrated data from the Herzberg channel of LYRA for January
2010 are plotted in Fig. 2 . These data are available for the community (Do-
minique et al., 2011b) and corrected for the temperature e↵ects, degradation,
the dark current, and one minute averaged. One can see that the data have a
very noisy structure so they had to be processed with a special care.

Some part of the data corresponds to the periods of the significant pointing
fluctuations of the PROBA2 or occultations and thus had to be excluded from

SOLA: ecl_paper.tex; 13 November 2011; 18:44; p. 3
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2010 are plotted in Fig. 2 . These data are available for the community (Do-
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Center-to-limb variations of the solar brightness

Shapiro et al.
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(a) January 15, 2010
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(b) July 11, 2010

Figure 1. Relative variations of the irradiance as measured by the Herzberg channel of LYRA.
The intervals of zero intensity occur during the occultations when PROBA-2 passes the Earth
shadow in the winter season. The panels show two eclipses separated by the three occultations
on January 15, 2010 (a) and four eclipses on July 11, 2010 (b). The periodic abrupt changes
of the irradiance level are due to the spacecraft maneuvers.

In this paper we analyze the first measurements of the Large Yield RA-
diometer (LYRA) (Hochedez et al., 2006; Benmoussa et al., 2009) onboard
the PROBA-2 satellite launched on November 2, 2009. Up to now LYRA has
observed several solar eclipses (see Fig. 1).

During the eclipse the Moon consecutively covers different parts of
the solar disk. The light curve of the eclipse depends on the CLV of
the solar brightness and on the geometry of the eclipse (the angular
radii of the Sun and the Moon as well as the minimum distance be-
tween their centers which is reached during the maximum phase of the
eclipse). If the geometry of the eclipse is known and the distribution
of solar brightness has radial symmetry then the light curve of the
eclipse can be used to retrieve the CLV of the solar brightness. Let
us notice that the assumption of the radial symmetry is well-justified
for the January 15, 2010 eclipse as the solar activity level was very

SOLA: ecl_paper_rev1.tex; 27 November 2011; 14:51; p. 2
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Figure 1. Relative variations of the irradiance as measured by the Herzberg channel of LYRA.
The intervals of zero intensity occur during the occultations when PROBA-2 passes the Earth
shadow in the winter season. The panels show two eclipses separated by the three occultations
on January 15, 2010 (a) and four eclipses on July 11, 2010 (b). The periodic abrupt changes
of the irradiance level are due to the spacecraft maneuvers.

In this paper we analyze the first measurements of the Large Yield RA-
diometer (LYRA) (Hochedez et al., 2006; Benmoussa et al., 2009) onboard
the PROBA-2 satellite launched on November 2, 2009. Up to now LYRA has
observed several solar eclipses (see Fig. 1).

During the eclipse the Moon consecutively covers different parts of
the solar disk. The light curve of the eclipse depends on the CLV of
the solar brightness and on the geometry of the eclipse (the angular
radii of the Sun and the Moon as well as the minimum distance be-
tween their centers which is reached during the maximum phase of the
eclipse). If the geometry of the eclipse is known and the distribution
of solar brightness has radial symmetry then the light curve of the
eclipse can be used to retrieve the CLV of the solar brightness. Let
us notice that the assumption of the radial symmetry is well-justified
for the January 15, 2010 eclipse as the solar activity level was very

SOLA: ecl_paper_rev1.tex; 27 November 2011; 14:51; p. 2
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Eclipses observed by PREMOS/PICARD
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Modeling of the solar rotational cycle

Detection of Solar Rotational Variability in the LYRA 190 – 222 nm Spectral Band
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Figure 8. Filling factors of the plage and bright plage (a), and penumbra and umbra (b) as
a function of time. The filling factors are extracted from PSPT images.
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Figure 9. The variability of the solar irradiance at the Herzberg continuum range (190 – 222
nm) as measured by LYRA (versions 1 and 2, see Section 2) and SOLSTICE and modeled
with COSI.

components are taken from Fontenla et al. (1999). A self-consistent simultaneous
solution of the radiative transfer and the statistical equilibrium equation for the
level populations guarantees that COSI considers the correct physics for the
Herzberg region where assumption of local thermodynamical equilibrium breaks
down. The calculations with COSI yield the spectral solar irradiance which
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The Sun among its stellar cohort
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