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II - Approaches to rainfall modelling

1. Statistically governed deterministic modelling approaches

Resampling methods (Method of Analogues, e.g. Wetterhall) together with a
model for weather type generation or the simulation of relevant climatological

variables
@: The rainfall is realistic

©: (1) There are no extremes larger than the observed; (ii) this relies either upon
another model, which will itself have to be adapted for a changed climate; or it
uses weather types, of which it is not known whether they cover all relevant
future climatological conditions — but the use of analogue locations offers a way

round this.

RESAMPLING METHOD

Weather types that are modelled independently determine the class of the time-step (e.g.
day), or a set of climate variables (Temperature, SLP, Relative Humidity, etc.) at that time.
Historical data from days of the same class/from other time-steps that are analogous
according to some distance, are sampled

Additional constraints mav be introduced to ensure temboral correlation




2. Purely statistical models

Markov models where the dependence upon the past is the key driver of the
simulation

Regression models and Generalised Linear Models (e.g. Chandler) which rely
chiefly upon establishing relations between the rainfall and
(‘I|mamlnmr‘allnennranhlml iInformation

(|) Regressmns and GLMs assume a general form of the dependence (erX|bIe
In GLMs) on causing factors and the explanatory variables are not independent.

(i1) The Markov assumption does not represent persistence properly
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3. Phenomenological models focussing upon the scaling features of rainfall

Characteristic rainfall features such as the non-centred moments of rainfall intensities or the
probabilities of exceeding scale related thresholds exhibit scaling features which can be
captured by a number (fractal) or a function (multifractal)

Ramfall can therefore be dlrectly modelled by a (multl )fractal cascade. The theory leads

@: (i) The rainfall is easy to generate; (i1) the model is parsimonious

©: (i) A cascade process requires coarse-scale information as starting point, so the
most obvious application of the model is in downscaling mode; (i1) There are breaks in
the scaling so that scale independence only holds over certain ranges. Where the breaks
occur may however depend upon the type of rainfall.
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4. Phenomenological models focussing upon scale-dependent features
of rainfall

Characteristic rainfall features such as the clustering of rainfall cells (convective or sub-
mesoscale) within storms (mesoscale), the intermittency patterns can be captured by driving the
generation of short events (instantaneous or rectangular pulses of ralnfall) by a process that
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(Cox) models

@: (1) The model parameters are easily interpretable; (i1) a number of properties (for the
first) or the likelihood function (for the second) can be derived mathematically

©: (i) Parameter identification (for the first) is difficult; (i1) The models tend to

overestimate daily extremes and underestimate hourly and sub-hourly extremes (part
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III - The Poisson cluster process approach

1. Model description
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Random Parameter (or Modified) Bartlett-Lewis Rectangular Pulse Model

Arrival of storms according to a Poisson process (A)

Mean cell durations gamma distributed (a,v)

Arrival of cells in a storm according to a Poisson process (kn)

Storm duration exponentially distributed (opn)

Cell intensity exponentially (or other) distributed (n,) (and p,2)
Cell duration exponentially distributed Q)

Rate of storm arrival

Rate of cell arrival

Cell
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T
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2. Model fitting

..): Mean rainfall intensity

..). Standard deviation of rainfall intensities

..). Autocorrelation (lag 1) structure of rainfall intensities
..). Skewness of rainfall intensities

..): Proportion of dry intervals

!

| p
Rainfall data set - F(A, uy,...) = z Wi (A; (A, g, ) — Q)2
(typically hourly =
data) from which i One set of parameters is obtained for each calendar:

sample statistics ' month of the year, so that the model is able to'

are estimated: ' reproduce seasonality

{Q,Q5,...,Q,}
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IV - Main challenges

1. Impact of parameter
Identifiability issues

There are many near-optimal
parameter sets that produce
significantly different types of
rainfall, as can be seen, e.g.
from the annual extreme
rainfall depths

T=32 8 20 55 149 years
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2. Problems in reproducing
extreme rainfalls

There are many studies (e.g.
Verhoest et al., 2010) showing a
tendency for many variants of these
models to underestimate hourly (and
sub-hourly) extreme rainfall depths
and overestimate daily extreme
depths. This is not necessarily easy
to address by changing the
distribution of cell depths

IV. Main challenges
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3. Problems in reproducing the variance
function

As Marani (2003) claimed, the function describing how the
variance changes with the time-scale is a very useful indicator of
the nature of the stochastic process driving the precipitation.

T
var(Ry) = Zazf (T —Dp(r)dt
0

Assuming p(t) is finite, when T — oo :
If var(R;) « T, the process has a finite memory

if var(Ry) «< T?, with 1 < w < 2, the process exhibitswlong-range
dependence, characterised by the Hurst exponent: H = — > 0.5.This is

often because the process has infinite memory. It also exhibits scaling
behaviour (see also Koutsoyiannis, 2011, 2016),

For the Random Parameter Bartlett-Lewis model,
d(var(Ry))/dT=a+b (T+0) 2T %+ g(fT+c)2®

and generally @ > 2, which entails that this model has a finite

memory (w = 1), but the data indicate infinite memory.

Note that non-stationarity is reflected in large-scale variability, so the
model’s limited ability to deal with non-stationarity (through different
monthly parameters) is also at stake here.

IV. Main challenges
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4. Simple methodology for applying such
models in the context of a changed climate

Currently, the standard methodology for applying Poisson-
cluster models to a changed climate is to infer the change in
the p (point) statistics T(Y; ;) (i = 1, ..., p) used for the fit to
each calendar month (t = 1, ..., 12) from the change in the
corresponding spatial statistics S(Y;;) (i = 1, ..,p; t =
1,...,12) as they are predicted from runs of a Regional
Circulation Model (Kilsby et al., 2007; Onof and Arnbjerg-
Nielsen, 2009):

Tcontrol (Yt,i) - Tprojection (Yt,i)
Scontrol (Yt,i) Sprojection(yt,i)

This methodology is widely applied (e.g. UKCPQ9) although
It lacks empirical justification

IV. Main challenges
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These problems are interconnected

A - Poor parameter identifiability suggests that there is not
enough information in the rainfall signal as it is summarised
through moments of different orders of the intensity and wet-
dry process to identify a single set of parameters (e.g. even
when the skewness is included).

In particular, there is not enough information about extreme
Intensities so that the different parameter sets lead to a range
of extreme value behaviour.

Further information could be obtained from climatological
variables; this would give a physical basis to
Implementations of the model in a changed climate

B — Insufficient variability at very large time-scales (1 month
and above) can entail an inability to reproduce intensities
that are as extreme (both high and low) as those observed in
the data set even at much finer time-scales.

IV. Main challenges

-

1. We can seek to include
additional information that is
not directly about
precipitation but its drivers
(temperature, SLP, etc.)

2. If we are interested in
extreme values only, we can
aim to be less ambitious and
model a small portion of the
depth distribution of rainfall,
ignoring low intensities

3. We can combine the point
process model with another
model that generates

a — either coarse-scale
(daily+) rainfall

b - or we can use scaling
properties of statistics above
a certain scale to model the
statistics required to fit a BL
model
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V - Some recent and contemporary work
Improving the realism of the generated rainfall

There have been a number of developments in the structure of Poisson-cluster models, some
of which are:

the introduction of two types of cells (Cowpertwait, 1994)

the replacement of the rectangular cell by another Poisson process, of instantaneous
pulses (Cowpertwait, Isham and Onof, 2007)

the Introduction of dependence between cell intensity and duration (e.g. using copulas,
Evin & Favre, 2008)

the development of non-stationary Neyman-Scott models drawing upon the projected
changes in rainfall statistics according to Regional Circulation Models (Burton et al.,
2010)

the combination with a random cascade model (Paschalis, Molnar, Fatichi and Burlando,
2014) to improve fine-scale behaviour

the inclusion of cell intensity in the randomisation of the Bartlett-Lewis model
(Kaczmarska, Isham and Onof, 2014) which improves fine-scale behaviour

These naners also make contriblitine< toaddrd<sing thamainichallenaes



Rainfall [mm]
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b. Censoring approach

Observed vs. Simulated AM [Gringorten PPs]

5 minute resolution Annual exceedance probability (AEP)
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[0 95% Cls [>0.5 mm] [ 95% Cls [>0.55 mm] [J 95% Cls [>0.6 mm] [J 95% Cls [>0.65 mm]
[> 0 mm]: Mean [1] CoeffVar [0.083,6,24] Skew [0.083,6,24] lag-1 AC [0.083,6,24]

[censored]: Mean [1] CoeffVar [0.083,6,24] lag-1 AC [0.083,6,24]

Hyetograph
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Rainfall (mm)
0
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Questions: 1. How should the censor be chosen?

2. How is the performance at other time-scales?
3. Can the lower intensity rainfall be modelled?
(e.g. use simulated annealing — Bardossy, 1998)

V. Some recent and contemporary work



c. Using nearest climatological neighbour data to fit

Standardly, a Bartlett-Lewis model is fitted by separating out calendar months.
This is a little arbitrary and the change in the climate suggests a shift of seasons, so
It may not be optimal to use only January rainfall to obtain parameters for future
January rainfall for instance.

In Kaczmarska et al. (2015), a Local Generalised Method of Moments Is applied
so that the parameters for a given month are obtained by using data from all
months, weighted by the “proximity”” which their climatology exhibits to the
month of interest. This has been tested for climatologies defined by Temperature
and SLP.

So far, for a data set of n months, and with p properties, the optimal parameters were estimated as:

& g 1 i :
Om = argming {Zi:1wi [Z?:ll(mt =0 Zt=11(mt = m)(A;(O) — Qi(Yt))] }
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Consider a data set of n months of rainfall and with p statistics for each month Q; (Y;) (t =1, ...,n;i =
- 1,...,p), and consider now the use of weights w; (i = 1, ..., p) chosen as the inverse of the variance of
: property i (Jesus and Chandler, 2011)

An optimal parameter set is obtained for each calendar month m (m = 1, ..., 12) by minimising an objective
: function based in which only the properties for month m in the data set will play a role

p " 2
m = argming, {Zl 1var(£;) [Z I(mt m) zt:ll(mt - m)(Ai(Qm) - Qi(Yt))] }

Local generalised method of moments with optimal weights:

Additionally, we now consider the availability of data for a vector of monthly covariates X: {X,} (t =1, ...,n) |
: With this, we can now estimate a parameter value for any possible value x, of covariate X
: To that end, we introduce a measure of the closeness of each month ¢ of the data set to a month with covariate

value X0- Kh(Xt - xo).
: This is defined as K, (X; — xq) = where K(.) is a kernel function (e.g. a Gaussian kernel)

~ . p
6(xo) = argming [21 1var(ﬂ)[2 Kh(Xt o) zt 1Kh(Xt x0)(4;(0) — Q (Yt))] }

V. Some recent and contemporary work
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Parameter identifiability is improved:

Model is able to display more variability thus improving extreme value performance:

Covariates: calendar month Covariaies: slp. temp & tvind Questions: 1. How should the bandwidth h be
chosen?

2. Is a monthly value sufficient to take on board
the role of climatological variables in generating
precipitation?

Mean haourly rainfall, mir
Mean hourly rainfall, mm

T T T T T T T T T T T T
1950 1960 1970 1980 1990 2000 1850 1960 1970 1980 1900 2000
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d. Combining Poisson cluster model with a model for coarse
scale statistics

The idea here is to fit different models to each month of the data set (Kim et al., Questions: 1. Isa
2016). If a suitable model can be found to represent the set of statistics {T(Y,)} ™Markov structure for

required in the fit for month ¢, then larger scale variability can be conserved by gt'aeéitfssagf’;‘;’ggﬁtf,

this mOd_EL _ - 2. How parsimonious
The scaling properties of these statistics make such a coarse-scale model is the final model?

(a) Hourly mean versus hourly STD of July

)
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e. Combining Poisson cluster model with a model for the
coarse scale rainfall depths

As with the previous option, the idea is to use two models, one of which will
ensure the appropriate coarse-scale variability Is reproduced. Here, however,
this coarse-scale is daily, which will enable us to control rainfall generation
using daily climatological information.

There are many candidates for such a daily weather generator. A GLM is
chosen, and it is combined with a Bartlett-Lewis model in disaggregation
mode (see Koutsoyiannis and Onof, 2001) using the HYETOS software.
This approach has the advantages of (i) allowing the incorporation of any
relevant explanatory variable (climatological or other); (ii) allowing rainfall
for a changed climate to be generated by incorporating dependence upon
climatological variables at the daily time-scale.

V. Some recent and contemporary work
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Questions: 1. Does the combination

of these two models not introduce too

much variability?

2. Does this improve the reproduction

of extremes?



f. Combining Poisson cluster model with a model for weather

types

Variation with covariate
bs

BLO model fit, MID,ATHERSTONE

Variation with covariate
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Questions: 1. How easily can the
Bartlett-Lewis be fitted to rainfall
from a given weather type?

2. Might climate change applications
not require that new weather types be
Introduced?
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VI. Conclusion

From the above recent and ongoing work, we can see that there
are a number of promising areas of research centred upon the
use of Poisson-cluster Rectangular Pulse models.

Having chosen to use a Poisson-cluster model as tool for a

weather generator, the following choices need to be made:

- Achoice of method/model to combine it with so as to
reproduce large-scale variability and/or include
climatological information

- Adecision as to how best to use the data, ideally including
climate information to guide the use of historical
Information

- Achoice of time-scales at which the Poisson-cluster model
IS to be fitted or constrained

- Adecision as to whether to divide the data into periods of
defining fixed seasons (e.g. months), or periods defined by
weather-types.

V1. Conclusion



