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II - Approaches to rainfall modelling 

1. Statistically governed deterministic modelling approaches

Resampling methods (Method of Analogues, e.g. Wetterhall) together with a 
model for weather type generation or the simulation of relevant climatological 
variables

⊕: The rainfall is realistic

⊖: (i) There are no extremes larger than the observed; (ii) this relies either upon 
another model, which will itself have to be adapted for a changed climate; or it 
uses weather types, of which it is not known whether they cover all relevant 
future climatological conditions – but the use of analogue locations offers a way 
round this.

II. Approaches to rainfall modelling

RESAMPLING METHOD
Weather types that are modelled independently determine the class of the time-step (e.g. 
day), or a set of climate variables (Temperature, SLP, Relative Humidity, etc.) at that time.
Historical data from days of the same class/from other time-steps that are analogous 
according to some distance, are sampled
Additional constraints may be introduced to ensure temporal correlation



2. Purely statistical models

Markov models where the dependence upon the past is the key driver of the 
simulation

Regression models and Generalised Linear Models (e.g. Chandler) which rely 
chiefly upon establishing relations between the rainfall and 

climatological/geographical information

⊕: Straightforward approach easy to calibrate

⊖: (i) Regressions and GLMs assume a general form of the dependence (flexible 
in GLMs) on causing factors and the explanatory variables are not independent. 

(ii) The Markov assumption does not represent persistence properly

II. Approaches to rainfall modelling

LINEAR REGRESSION

𝑅 =  
𝑖=1

𝑛

𝛾𝑖 𝐶𝑖 + 𝑍

GENERALISED LINEAR MODELS

Occurrence:
𝑝

1−𝑝
= 𝑒𝑥𝑝  𝑖=1

𝑛 𝛼𝑖 𝑋𝑖 Depth: 𝐸 𝑅 = 𝑒𝑥𝑝  𝑖=1
𝑛 𝛽𝑖 𝑌𝑖 & 𝑅~Gamma(𝑎, 𝑏)

Re (i): interactions between variables can be included in a GLM for instance

Re (ii): the Markov assumption can be relaxed to include dependence upon more than one previous time-step



3. Phenomenological models focussing upon the scaling features of rainfall 

Characteristic rainfall features such as the non-centred moments of rainfall intensities or the 
probabilities of exceeding scale related thresholds exhibit scaling features which can be 
captured by a number (fractal) or a function (multifractal)

Rainfall can therefore be directly modelled by a (multi-)fractal cascade. The theory leads 
directly to macrocanonical cascades (e.g. Lovejoy and Schertzer; Menabde). Alternatively, 
it is possible to implement a microcanonical cascade (e.g. Olsson). 

⊕: (i) The rainfall is easy to generate; (ii) the model is parsimonious

⊖:  (i) A cascade process requires coarse-scale information as starting point, so the 
most obvious application of the model is in downscaling mode; (ii) There are breaks in 
the scaling so that scale independence only holds over certain ranges. Where the breaks 
occur may however depend upon the type of rainfall.

II. Approaches to rainfall modelling

MULTI-SCALING:

𝐸(𝑅(ℎ)
𝑞

) ∝ ℎ−𝐾(𝑞)

𝑃 𝑅 ℎ > ℎ−𝛾 ∝ ℎ𝑐 𝛾

𝐸 𝑓 ∝ 𝑓−𝛽

MICRO-CANONICAL CASCADE

MACRO-CANONICAL CASCADE

Re (ii): there have however been studies in which the cascade generator has been allowed to have a distribution 

that changes with the temporal scale, and with the intensity at the next scale below.



4. Phenomenological models focussing upon scale-dependent features 
of rainfall 

Characteristic rainfall features such as the clustering of rainfall cells (convective or sub-
mesoscale) within storms (mesoscale), the intermittency patterns can be captured by driving the 
generation of short events (instantaneous or rectangular pulses of rainfall) by a process that 
either explicitly models clustering or reproduces it through a doubly-stochastic process. 

Assuming independence between model building blocks, in the first case, we have Poisson 
cluster (Bartlett-Lewis or Neyman-Scott) models; in the second case, we have Doubly stochastic 
(Cox) models

⊕: (i) The model parameters are easily interpretable; (ii) a number of properties (for the 
first) or the likelihood function (for the second) can be derived mathematically

⊖:  (i) Parameter identification (for the first) is difficult; (ii) The models tend to 
overestimate daily extremes and underestimate hourly and sub-hourly extremes (particularly a 
problem for the second)

II. Approaches to rainfall modelling

POISSON-CLUSTER MODEL

DOUBLY-STOCHASTIC POISSON MODEL

Re (i): a better understanding of the reliability of parameter estimates can now be obtained through confidence 

intervals 

Re (ii): a number of approaches have been proposed to tackle this problem



III – The Poisson cluster process approach

1. Model description

III. The Poisson cluster process approach

Time t

Poisson-cluster process 

Cells clustered in storms

Blue Line: Continuous rainfall Y(t) 

Red Line: Aggregated rainfall  𝑌𝑖
(ℎ)

=  𝑖−1 ℎ

𝑖ℎ
𝑌 𝑡 𝑑𝑡



time

storm 1 storm 2

Storm duration Storm duration

Rate of storm arrival Rate of cell arrival

Cell       

intensity

Cell 

duration

Bartlett-Lewis Rectangular Pulse Model

Arrival of storms according to a Poisson process (λ)

Arrival of cells in a storm according to a Poisson process(β)

Storm duration exponentially distributed (γ)

Cell intensity exponentially (or other) distributed (μx) (and μx
2)

Cell duration exponentially distributed (η)

Random Parameter (or Modified) Bartlett-Lewis Rectangular Pulse Model

Arrival of storms according to a Poisson process (λ)

Mean cell durations gamma distributed (α,ν)

Arrival of cells in a storm according to a Poisson process (κη)

Storm duration exponentially distributed (φη)

Cell intensity exponentially (or other) distributed (μx) (and μx
2)

Cell duration exponentially distributed (η)



2. Model fitting

• A1(λ,μX,…): Mean rainfall intensity
• A2(λ,μX,…): Standard deviation of rainfall intensities
• A3(λ,μX,…): Autocorrelation (lag 1) structure of rainfall intensities
• A5(λ,μX,…): Skewness of rainfall intensities
• A5(λ,μX,…): Proportion of dry intervals
• …

III. The Poisson cluster process approach

Rainfall data set

(typically hourly 

data) from which 

sample statistics 

are estimated:

{Ω1, Ω2,…, Ω𝑛}

One set of parameters is obtained for each calendar

month of the year, so that the model is able to

reproduce seasonality

𝐹 𝜆, 𝜇𝑋, … =  

𝑖=1

𝑝

𝜔𝑖 𝐴𝑖 𝜆, 𝜇𝑋, … − Ω𝑖
2



III. The Poisson cluster process approach



IV – Main challenges

T =  3.2            8             20           55          149   years

1. Impact of parameter 

identifiability issues

There are many near-optimal 

parameter sets that produce

significantly different types of

rainfall, as can be seen, e.g. 

from the annual extreme 

rainfall depths

IV. Main challenges



2. Problems in reproducing 

extreme rainfalls

There are many studies (e.g. 
Verhoest et al., 2010) showing a 
tendency for many variants of these 
models to underestimate hourly (and 
sub-hourly) extreme rainfall depths  
and overestimate daily extreme 
depths. This is not necessarily easy 
to address by changing the 
distribution of cell depths

IV. Main challenges



3. Problems in reproducing the variance 
function

As Marani (2003) claimed, the function describing how the 
variance changes with the time-scale is a very useful indicator of 
the nature of the stochastic process driving the precipitation.

𝑣𝑎𝑟 𝑅𝑇 = 2𝜎2  
0

𝑇

𝑇 − 𝜏 𝜌 𝜏 𝑑𝜏

Assuming 𝜌 𝜏 is finite, when 𝑇 → ∞ :

if 𝑣𝑎𝑟(𝑅𝑇) ∝ 𝑇, the process has a finite memory

if 𝑣𝑎𝑟 𝑅𝑇 ∝ 𝑇𝜔, with 1 < 𝜔 < 2, the process exhibits long-range 
dependence, characterised by the Hurst exponent: 𝐻 =

𝜔

2
> 0.5.This is 

often because the process has infinite memory. It also exhibits scaling 
behaviour (see also Koutsoyiannis, 2011, 2016),

For the Random Parameter Bartlett-Lewis model, 

d var(𝑅𝑇) /dT=a+b (T+c)2−α+𝑔(fT+c)2−α

and generally 𝛼 > 2, which entails that this model has a finite

memory (𝜔 = 1), but the data indicate infinite memory.

Note that non-stationarity is reflected in large-scale variability, so the 
model’s limited ability to deal with non-stationarity (through different 
monthly parameters) is also at stake here.

IV. Main challenges
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4. Simple methodology for applying such 
models in the context of a changed climate

Currently, the standard methodology for applying Poisson-
cluster models to a changed climate is to infer the change in 

the 𝑝 (point) statistics 𝑇 𝑌𝑡,𝑖 𝑖 = 1, … , 𝑝 used for the fit to 

each calendar month (𝑡 = 1, … , 12) from the change in the 

corresponding spatial statistics 𝑆 𝑌𝑡,𝑖 (𝑖 = 1, … , 𝑝; 𝑡 =
1, … , 12) as they are predicted from runs of a Regional 
Circulation Model (Kilsby et al., 2007; Onof and Arnbjerg-
Nielsen, 2009):

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑌𝑡,𝑖

𝑆𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑌𝑡,𝑖

=
𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑌𝑡,𝑖

𝑆𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑌𝑡,𝑖

This methodology is widely applied (e.g. UKCP09) although 
it lacks empirical justification

IV. Main challenges



These problems are interconnected

A - Poor parameter identifiability suggests that there is not 
enough information in the rainfall signal as it is summarised 
through moments of different orders of the intensity and wet-
dry process to identify a single set of parameters (e.g. even 
when the skewness is included).

In particular, there is not enough information about extreme 
intensities so that the different parameter sets lead to a range 
of extreme value behaviour.

Further information could be obtained from climatological 
variables; this would give a physical basis to 
implementations of the model in a changed climate

B – Insufficient variability at very large time-scales (1 month 
and above) can entail an inability to reproduce intensities 
that are as extreme (both high and low) as those observed in 
the data set even at much finer time-scales.

IV. Main challenges

1. We can seek to include 
additional information that is 
not directly about 
precipitation but its drivers 
(temperature, SLP, etc.)

2. If we are interested in  
extreme values only, we can 
aim to be less ambitious and 
model a small portion of the 
depth distribution of rainfall, 
ignoring low intensities

3. We can combine the point 
process model with another 
model that generates 
a – either coarse-scale 
(daily+) rainfall
b  - or we can use scaling 
properties of statistics above 
a certain scale to model the 
statistics required  to fit a BL 
model



V – Some recent and contemporary work
a. Improving the realism of the generated rainfall
There have been a number of developments in the structure of Poisson-cluster models, some 

of which are:

- the introduction of two types of cells (Cowpertwait, 1994)

- the replacement of the rectangular cell by another Poisson process, of instantaneous 

pulses (Cowpertwait, Isham and Onof, 2007)

- the introduction of dependence between cell intensity and duration (e.g. using copulas, 

Evin & Favre, 2008)

- the development of non-stationary Neyman-Scott models drawing upon the projected 

changes in rainfall statistics according to Regional Circulation Models (Burton et al., 

2010)

- the combination with a random cascade model (Paschalis, Molnar, Fatichi and Burlando, 

2014) to improve fine-scale behaviour

- the inclusion of cell intensity in the randomisation of the Bartlett-Lewis model 

(Kaczmarska, Isham and Onof, 2014) which improves fine-scale behaviour

These papers also make contributions to addressing the main challengesV. Some recent and contemporary work



b. Censoring approach

At a given time-scale (e.g. 1 h) set all rainfall depths 

below δ to 0; model the remaining rainfall depths and

add δ to the generated rainfall.

This leads to a step change in the reproduction of 

extreme rainfall depths at the scale in question.

V. Some recent and contemporary work

Questions: 1. How should the censor be chosen?

2. How is the performance at other time-scales?

3. Can the lower intensity rainfall be modelled?

(e.g. use simulated annealing – Bardossy, 1998)



c. Using nearest climatological neighbour data to fit

Standardly, a Bartlett-Lewis model is fitted by separating out calendar months. 

This is a little arbitrary and the change in the climate suggests a shift of seasons, so 

it may not be optimal to use only January rainfall to obtain parameters for future 

January rainfall for instance.

In Kaczmarska et al. (2015), a Local Generalised Method of Moments is applied 

so that the parameters for a given month are obtained by using data from all 

months, weighted by the “proximity” which their climatology exhibits to the 

month of interest. This has been tested for climatologies defined by Temperature 

and SLP.

V. Some recent and contemporary work

 𝜃𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑚
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2

So far, for a data set of 𝑛 months, and with 𝑝 properties, the optimal parameters were estimated as: 



Standard generalised method of moments with optimal weights:

V. Some recent and contemporary work
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Local generalised method of moments with optimal weights:

Consider a data set of 𝑛 months of rainfall and with 𝑝 statistics for each month Ω𝑖 𝑌𝑡 (𝑡 = 1, … , 𝑛; 𝑖 =
1, … , 𝑝), and consider now the use of weights 𝑤𝑖 (𝑖 = 1, … , 𝑝) chosen as the inverse of the variance of 

property 𝑖 (Jesus and Chandler, 2011)

Additionally, we now consider the availability of data for a vector of monthly covariates 𝑿: 𝑿𝒕 (𝑡 = 1, … , 𝑛)
With this, we can now estimate a parameter value for any possible value 𝑥0 of covariate 𝑿
To that end, we introduce a measure of the closeness of each month 𝑡 of the data set to a month with covariate 

value 𝒙𝟎: 𝐾ℎ(𝑿𝒕 − 𝒙𝟎).

This is defined as 𝐾ℎ 𝑿𝒕 − 𝒙𝟎 =
𝐾 𝑿𝒕−𝒙𝟎 /ℎ

ℎ
where K(.) is a kernel function (e.g. a Gaussian kernel)

An optimal parameter set is obtained for each calendar month 𝑚 (𝑚 = 1, … , 12) by minimising an objective 

function based in which only the properties for month 𝑚 in the data set will play a role

 𝜃(𝑥0) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑚
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V. Some recent and contemporary work

Parameter identifiability is improved:

Model is able to display more variability thus improving extreme value performance:

Questions: 1. How should the bandwidth ℎ be 

chosen?

2. Is a monthly value sufficient to take on board 

the role of climatological variables in generating 

precipitation? 



d. Combining Poisson cluster model with a model for coarse 

scale statistics

The idea here is to fit different models to each month of the data set (Kim et al., 

2016). If a suitable model can be found to represent the set of statistics 𝑇 𝑌𝑡

required in the fit for month 𝑡, then larger scale variability can be conserved by 

this model.

The scaling properties of these statistics make such a coarse-scale model 

feasible

V. Some recent and contemporary work

Questions: 1. Is a 

Markov structure for 

these coarse-scale 

statistics sufficient?

2. How parsimonious 

is the final model?



e. Combining Poisson cluster model with a model for the 

coarse scale rainfall depths

As with the previous option, the idea is to use two models, one of which will 

ensure the appropriate coarse-scale variability is reproduced. Here, however,  

this coarse-scale is daily, which will enable us to control rainfall generation 

using daily climatological information. 

There are many candidates for such a daily weather generator. A GLM is 

chosen, and it is combined with a Bartlett-Lewis model in disaggregation 

mode (see Koutsoyiannis and Onof, 2001) using the HYETOS software.

This approach has the advantages of (i) allowing the incorporation of any 

relevant explanatory variable (climatological or other); (ii) allowing rainfall 

for a changed climate to be generated by incorporating dependence upon 

climatological variables at the daily time-scale.

V. Some recent and contemporary work



V. Some recent and contemporary work

Questions: 1. Does the combination 

of these two models not introduce too 

much variability?

2. Does this improve the reproduction 

of extremes?



f. Combining Poisson cluster model with a model for weather 

types

We can move away from the reliance upon the monthly time-scale in 

Poisson-cluster modelling and introduce a climatological dependence by 

seeking to define weather types, either in terms of rainfall characteristics or 

in terms of circulation patterns (see Vrac, Stein and Hayhoe, 2007), and 

fitting a model to each weather type. Weather types can then be generated by 

a Markov chain.

This is ongoing research.

V. Some recent and contemporary work

Questions: 1. How easily can the 

Bartlett-Lewis be fitted to rainfall 

from a given weather type? 

2. Might climate change applications 

not require that new weather types be 

introduced? 



VI. Conclusion

VI. Conclusion

From the above recent and ongoing work, we can see that there 

are a number of promising areas of research centred upon the 

use of Poisson-cluster Rectangular Pulse models.

Having chosen to use a Poisson-cluster model as tool for a 

weather generator, the following choices need to be made:

- A choice of method/model to combine it with so as to 

reproduce large-scale variability and/or include 

climatological information

- A decision as to how best to use the data, ideally including 

climate information to guide the use of historical 

information

- A choice of time-scales at which the Poisson-cluster model 

is to be fitted or constrained

- A decision as to whether to divide the data into periods of 

defining fixed seasons (e.g. months), or periods defined by 

weather-types.


