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Introduction

When observed at the local scale, rainfall appears highly variable
In space and in time within rain events.

Picture: Anthony Michelon

=> How can we measure and reproduce the statistical behavior
of rainfall?
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Introduction

How can we measure and reproduce the statistical behavior of
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rainfall” | Rain Dy
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» Spatial correlation?
» Spatial patterns?
> Nature of rain / no-rain transitions?

» Temporal correlation?
» Morphing of spatial patterns?
» Advection of rain storm?
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Introduction

How can we measure and reproduce the statistical behavior of
rainfall?

=> Use a stochastic rainfall model.

o Input data: rain rate time series (high resolution rain gauges).
o Parameter inference:
» Calibration of the model.
» The calibrated model gives insights on the structure of rainfall.

o Simulation: generate synthetic rain fields which reproduce the structure of
observed rain fields.
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Instruments

Questions: - How to measure local rain fields?
- Which data to feed a local scale stochastic rainfall model?
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Instruments
Drop counting rain gauge

Drop counting rain gauge (Pluvimate).
Operation principle: counts calibrated drops instead of bucket tips.




Instruments

High resolution
Pluvimate Watchdog 1120

» Operation principle: Tipping bucket.
» Rain height resolution: 0.1-0.25mm.
» Sampling rate: 5 — 10 min.

» Operation principle: Drop counting.
» Rain height resolution: 0.01mm.
» Sampling rate: 30sec — 1min.
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Instruments
Calibration

Absolute calibration Relative calibration
Artificial rain, 0-20mm/h

Natural rain, 0-40mm/h

4 Measurement bias (%) 4 Frequency (%)

50t

40t

30l Rain rate € [0,5] mm/h
20 Rain rate € [5,10] mm/h

Rain rate

n
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Black: Pluvimate device
Red: Tipping bucket rain gauge (for comparison) 7/32




Instruments
Low cost and easy to set up

Relatively cheap (~500% per device).
Easy to set up (light, no moving parts, low power consumption).
Few maintenance (except low storage capacity).

=> Dense networks with many gauges, even in mountains.

e
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Instruments
Experimental network

» 8 rain gauges.
» 1km x 1km.
» Sampling rate: 30sec.

Lausanne . 3.
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Instruments
Observed rainfall structure

Single site observations Multi-sites observations

A A .
Rain rate (mm/h) 3 | Rainrate (mm/h)

L . i . 0 . . " »

% 10 20 Time (h) 16.5 17.0 17.5 180 Time (h)
« Mass of zero measurements. « Spatial variability of time series.
« Smooth dry/wet transitions. * More similarities for close gauges.

« Time shift for distant gauges.
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Stochastic rainfall model

Question: How to choose a stochastic model which can handle the
features of rainfall arising from Pluvimate data?
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Stochastic rainfall model
Conceptual model

Observations:

Spatial variability of 1{:
rain rate time series !
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Stochastic rainfall model
Conceptual model

Conceptual ?

model

raI morphin
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of rain patterns
! —p

12/ 32



Stochastic rainfall model
Overall modelling approach

4 Latent field value

 Latent Gaussian random field.

« Precipitation arise from the latent field
through truncation and transformation.
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« Rainfall dynamics is modeled by an asymmetric and non-separable
covariance function.

4 Rain intensity 4 Rain intensity 4 Rain intensity 4 Rain intensity 4 Rain intensity
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Stochastic rainfall model

Parametrization

Latent Gaussian random field:
o Spatio-temporal coordinates: (s, t).
o Standardized and stationary multivariate Gaussian random field: Y (s, t).

Precipitation arise from the latent field {Rm(& )=0 if¥(st) <a

. - i
through truncation and transformation: R (s.0) = (Y(s,r;) — ao>a2 FY(s0) > ay
1

Rainfall dynamics is modeled by an asymmetric and non-separable

covariance function p(s, t):
o Advection is modeled by a single vector V: p(ds — V.dt, dt) = p;(ds, dt).

o Diffusion / morphing is modelled by a non-separable covariance in a Lagrangian

reference frame: (ds)2y

ds, dt) = 1 ¢
pL( S, t)_ LeXp | — By

(") (@)
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Stochastic rainfall model

Parametrization

« Transform function:
o Truncation => proportion of dry areas: Rn(s,t) =0  if Y(s,t) < ag

o Transform function => skewness of the marginal distribution:

R (s,0) = (Y(s, t) — aq

1/a;
> if Y(s, t) > ay
aq




Stochastic rainfall model

Parametrization

« Covariance of the latent field:
o Advection vector: p(ds — V.dt, dt) = p;(ds, dt).

o Spatial dependencies: p.(ds,dt) = (

Range (parameter c): size of patterns
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Stochastic rainfall model

Parameter inference

« The inference of model parameters allows to:
o Calibrate the model.
o Gain insights on the structure of rainfall.

« A Bayesian approach is selected to account for the uncertainty on
model parameters.

o Use a Metropolis-Hastings sampler, which requires:
> A statistical model to calibrate => stochastic rainfall model.
> A calibration dataset => Rain rate time series.

» The likelihood of observations given model parameters => Easy to derive thanks to
the assumption of multivariate Gaussian latent field.

Metropolis-Hasting algorithm

1) Initialize model parameter 6 €
2) (a) Generate 8" ~q(6%|0) and u~Ug 1} (q = proposition kernel)

: L(Rm[607) X q(6167) _ p*
(b) If u < min (1, l(RmIQ)xq(0*|0))' then 6 =46
3) Iterate 2)
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Stochastic rainfall model

Parameter inference

* For large datasets, the calculation of the full-likelihood is
computationally infeasible.

L(R,,|0) = —O.5[log|2++| — Z_f__}}_:_lk_z_F — N+.log(2n)] — |.| and.”! for large matrices

+log pn, (ag 1200253, 200 + 240251 204) —> joint cdf ¢y, at many points

« Approximations are required:
o For positive measurements, the likelihood is evaluated for small blocks.

> Blockwise likelihood: 1(8]Ry,) =~ [TpZ, l(0]Rs1, )

o For zero measurements, the censored values of the latent field are simulated
by a Gibbs sampler within the Metropolis-Hasting algorithm.
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Stochastic rainfall model

Parameter inference
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Stochastic rainfall model

Simulation

« The posterior distribution of the stochastic rainfall model can be
used to generate synthetic rain fields, which are useful to:
o Simulate rainfall over the space-time domain of interest.
o Interpolate rain at any ungauged location (or time step):
> Predicted value.
» Assessment of prediction error.

« Simulation method:
o The latent field is first obtained by geostatistical simulation.
o Synthetic rain fields are derived by censoring & transforming the latent field.
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Stochastic rainfall model

Simulation
Calibrated model | Conditioning : )
\_____ _Gaa : Latent field
Covariance
of the latent field Geostatistical simulation

(V; 6! Cl d; ﬁl V19) VS)

Transform function Latent field transform
(ap, aq,ay)

m Single realization
Iterate =

realistic rain field

T

Rain field ensemble

equiprobable realizations

AveWWersion

Interpolated rain field Interpolation uncertainty
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Stochastic rainfall model
Simulation

For large space-time simulation grids, exact geostatistical
simulations of the latent field are computationally unfeasible.
o Require Choleski factorization of large covariance matrices.

Usual fast simulation methods (turning bands, FFT-based, etc.)
cannot be easily applied in the current context.

An ad-hoc simulation method has been developed:

o Choleski factorization in the space dimension.
o Multigrid Sequential Gaussian Simulation (SGS) in the time dimension.

Local neighborhood used for

simulation of the current time step
Area of interest

% -

Time step to simulate: Previously simulated
Use Choleski factorization 22/ 32 time steps




Stochastic rainfall model

Simulation

« In practice, the proposed simulation method does not worsen the
reproduction of rainfall statistics.

Exact simulation
(Choleski decomposition)

Approximated simulation
(40 neighboring time steps)

Approximated simulation
(4 neighboring time steps)
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Application

Question: What happens within a single radar pixel?

1h15m00s 1h17m30s 1h20m00s 1h22m30s 1h25mO00s
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Application

Experimental setup

« The proposed model is applied to two rain events in order to:
o Assess the space-time structure of the rain events (parameter inference step).
o Generate synthetic rain fields conditioned to observations (simulation step).

« Experimental setup:

o~ * " t g
[Lausanae

:&J«

O Rain observation location

ClT |
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Application

Parameter inference

 Model parameters are inferred to assess the space — time — intensity
statistical structure of the rain events of interest.

Convective rain

. Stratiform rain
Posteriors
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Application

Simulation of synthetic rain fields

« The inferred model parameters lead to different simulated rain fields.

Stratiform rain Convective rain

(X
3 P
)
s

Time (h)

S 3 ’ g w = A
. o~ ) [ ) 'l
| Time (h) » e "
1h20m00s 1h22m30s 1h25mO00s

1h15m00s 1h17m30s 1h20m00s 1h22m30s 1h25m00s 1h15m00s 1h17m30s

o Gentle rain, low intermittency. o Heavy rain, intermittent.
o Low space-time variability. o High space-time variability.
o Eastward advection. o Northward advection.
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Application

Rain prediction

* An ensemble of 100 realizations can be used to predict rainfall at
ungauged locations and to assess the prediction uncertainty.

Stratiform rain Convective rain

8“ Rain rate at S1 (mm/h) — = Max(realizations) 8015 Rain rate at 51 (mm/h)
Observation —> == i mfaan [rlla.aliz.ations] -
6 —_— in (realizations) sol
4 40
2 200}
0 0 - et L iy L .
4 6 Time (h
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Application

Cross-validation

« Cross-validation to assess the reliability of rainfall prediction:

Case 1: Case 2: Case 3:
Temporal only Spatial only Space-time (a)
t“ ' tJL tJl
dtI . . dt
o>
b b ds b ds

N s, N S; N S
R | R
= = " E
Stratiform Convective
rain C1 C2 C3 rain C1 C2 C3
dt = 30s MAE =0.70 MAE = 0.69 MAE =0.71 dt = 30s MAE =1.79 MAE = 2.26 MAE = 2.03
ds =50m Bias =-0.01 Bias =-0.001 Bias = -0.06 ds =50m Bias =-0.02 Bias = 0.30 Bias = 0.29
dt = 300s MAE =0.74 MAE =0.70 MAE =0.75 dt = 300s MAE = 3.83 MAE =1.99 MAE = 2.28
ds =500m Bias =-0.01 Bias =-0.002 Bias = -0.006 ds = 500m Bias =0.16 Bias = 0.20 Bias = 0.35

MAE: Mean Absolute Error

o Almost unbiased prediction.
o Low prediction errors.

o Positive contribution of the complex space-time covariance function.
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Model summary

Focus only on  Different parameter values
rain events for different rain events
A
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ﬁ Marginal distribution
Model rainfall as a Latent field + truncation & transform
space-time random field Space-time dependencies
+ Lagrangian + Space-time covariance
. Bayesian inference
Parameter inference — : : =
Metropolis Hastings + Blockwise likelihood
+

Geostatistical simulation
Multigrid simulation + back-transform

Simulation of synthetic rain fields —*
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Perspectives

* Apply the proposed framework to a larger network:
o 6km x 6km (Vallon de Nant, Swiss Alps). S
o Altitude: 1300 — 2200m => Orographic effects?
o Application to mountain hydrology.

o)
A
3
- : g r* SRS, .. / o il v
« Model storm arrival and persistence processes:
o Account for seasonality in rainfall structure (rain types).
o Application: stochastic rainfall generation for the whole year.
Winter Summer Winter —_ Storm arrival and
HEHEHE——— ] -_m’e persistence

_ Space-time structure
of rain fields
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Conclusion

« Drop counting rain gauges allow to monitor local rain fields:
o High resolution (0.01mm of rain) => high temporal resolution (30 sec).
o Low cost, easy to set up => dense networks.

* Alocal scale stochastic rainfall model has been proposed to handle
the features of rainfall arising from HR rain gauge measurements:
o Rain intermittency and skewed distribution of positive rain rates.
o Rain advection.
o Temporal morphing of rain patterns.

« This model can be used to:
o Investigate space-time dependencies within local rain fields.
o Estimate HR rain fields over small catchments (Mountain / urban hydrology).
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Thank you for your attention

« Drop counting rain gauges allow to monitor local rain fields.
« A Stochastic rainfall model has been proposed to handle these data.
« Applications: - Investigate space-time dependencies within rain fields.

- Estimate HR rain fields over small catchments.

Picture: Anthony Michelon



