

UNIL | Université de Lausanne

Sub-kilometer-scale space-time stochastic rainfall simulation

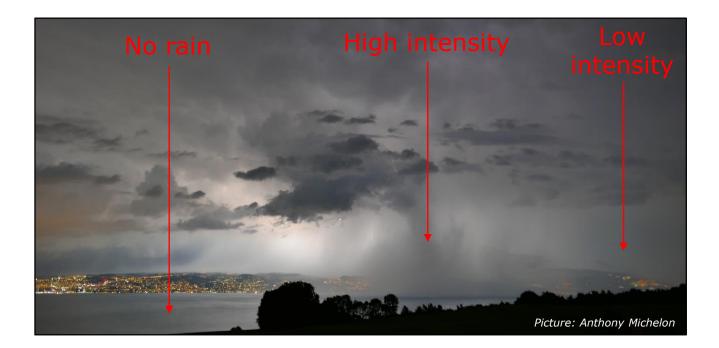
Lionel Benoit(University of Lausanne)Gregoire Mariethoz(University of Lausanne)Denis Allard(INRA Avignon)

| le savoir vivant |

SWGen-Hydro 2017 – Berlin - 20 September 2017

Introduction

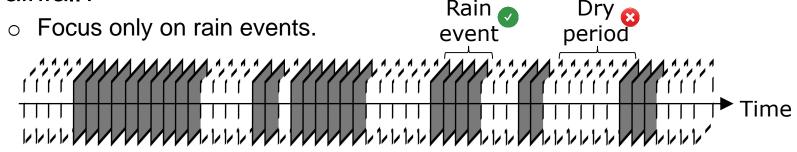
• When observed at the local scale, rainfall appears highly variable in space and in time within rain events.



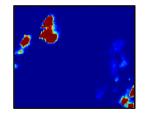
=> How can we measure and reproduce the statistical behavior of rainfall?

Introduction

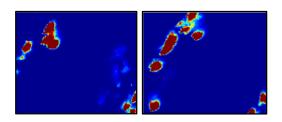
How can we measure and reproduce the statistical behavior of rainfall?



 \circ Within rain events, pay a particular attention to space-time dependencies:



- Spatial correlation?
- Spatial patterns?
- Nature of rain / no-rain transitions?



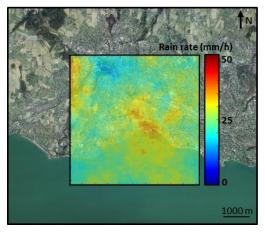
- Temporal correlation?
- Morphing of spatial patterns?
- Advection of rain storm?

Introduction

 How can we measure and reproduce the statistical behavior of rainfall?

=> Use a stochastic rainfall model.

- Input data: rain rate time series (high resolution rain gauges).
- Parameter inference:
 - Calibration of the model.
 - > The calibrated model gives insights on the structure of rainfall.
- Simulation: generate synthetic rain fields which reproduce the structure of observed rain fields.

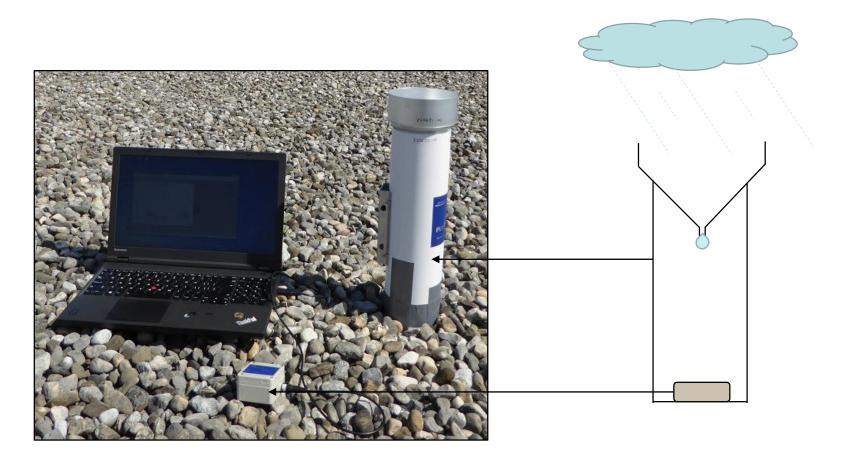


Questions: - How to measure local rain fields?

- Which data to feed a local scale stochastic rainfall model?

Drop counting rain gauge

- Drop counting rain gauge (Pluvimate).
- Operation principle: counts calibrated drops instead of bucket tips.

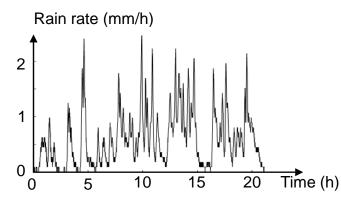


High resolution

6/32

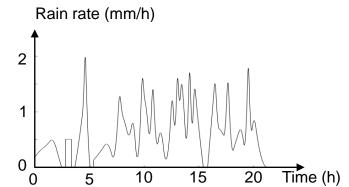
Pluvimate

- Operation principle: Drop counting.
- Rain height resolution: 0.01mm.
- Sampling rate: 30sec 1min.



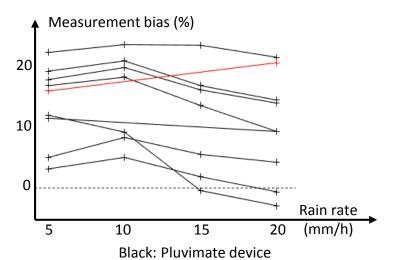
Watchdog 1120

- > Operation principle: Tipping bucket.
- ➢ Rain height resolution: 0.1-0.25mm.
- Sampling rate: 5 10 min.

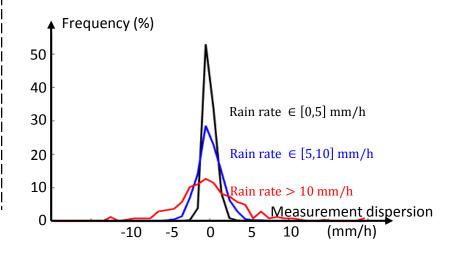


Instruments Calibration

Absolute calibration Artificial rain, 0-20mm/h



Relative calibration Natural rain, 0-40mm/h

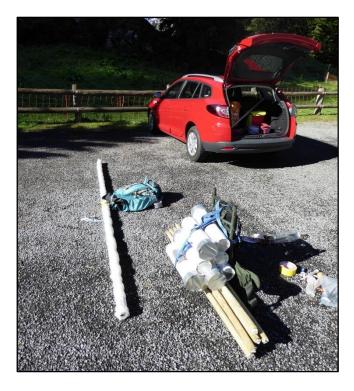


Red: Tipping bucket rain gauge (for comparison)

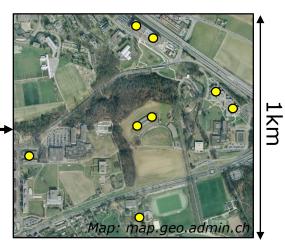
Low cost and easy to set up

- Relatively cheap (~500\$ per device).
- Easy to set up (light, no moving parts, low power consumption).
- Few maintenance (except low storage capacity).

=> Dense networks with many gauges, even in mountains.



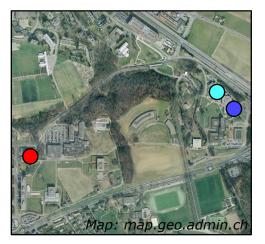
Instruments *Experimental network*



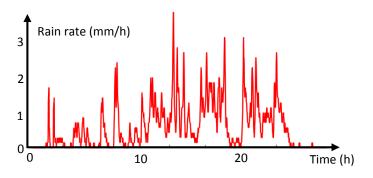
➢ 8 rain gauges.

- ➤ 1km x 1km.
- > Sampling rate: 30sec.

Observed rainfall structure

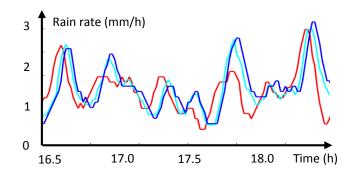


Single site observations



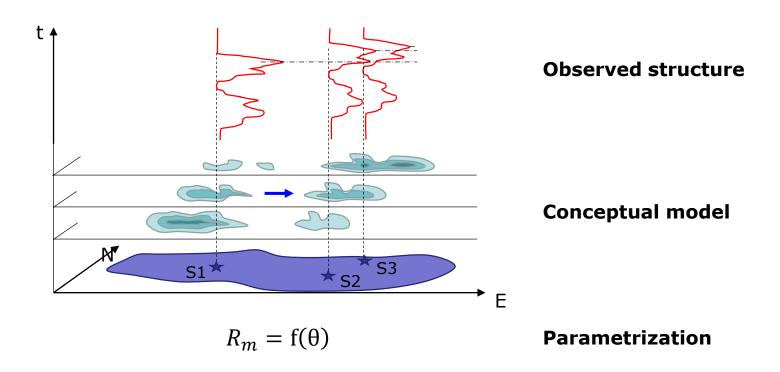
- Mass of zero measurements.
- Smooth dry/wet transitions.

Multi-sites observations

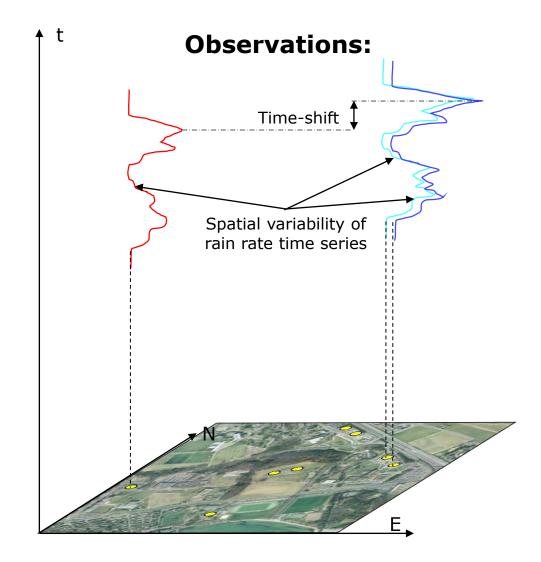


- Spatial variability of time series.
- More similarities for close gauges.
- Time shift for distant gauges.

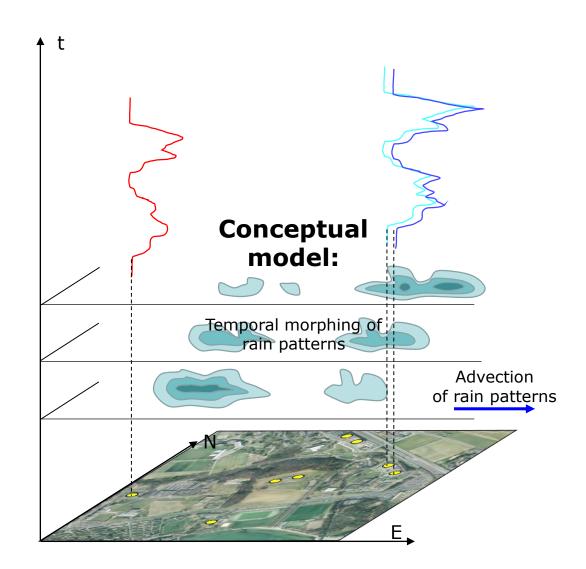
Question: How to choose a stochastic model which can handle the features of rainfall arising from Pluvimate data?



Stochastic rainfall model Conceptual model



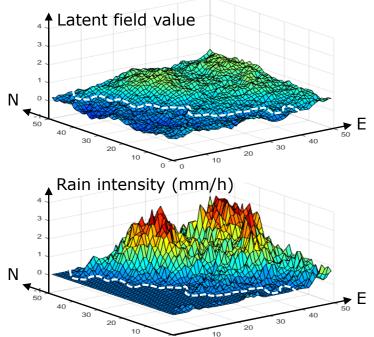
Conceptual model



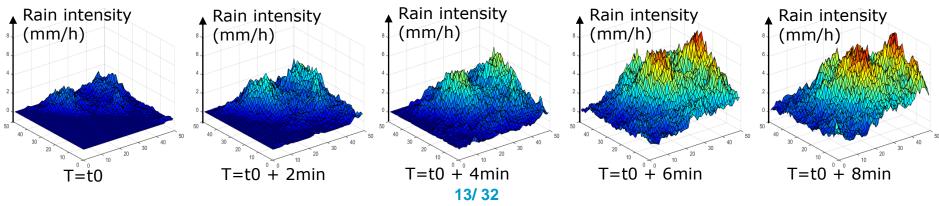
Overall modelling approach

• Latent Gaussian random field.

• Precipitation arise from the latent field through truncation and transformation.



• Rainfall dynamics is modeled by an asymmetric and non-separable covariance function.



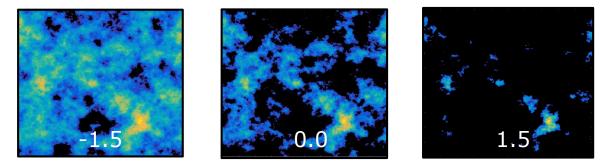
Stochastic rainfall model Parametrization

- Latent Gaussian random field:
 - Spatio-temporal coordinates: (s, t).
 - Standardized and stationary multivariate Gaussian random field: Y(s, t).
- Precipitation arise from the latent field $\begin{bmatrix} R_m(s,t) = 0 & \text{if } Y(s,t) \le a_0 \\ R_m(s,t) = \left(\frac{Y(s,t) a_0}{a_1}\right)^{\frac{1}{a_2}} \text{if } Y(s,t) > a_0 \end{bmatrix}$
- Rainfall dynamics is modeled by an asymmetric and non-separable covariance function $\rho(s, t)$:
 - Advection is modeled by a single vector V: $\rho(ds V.dt, dt) = \rho_L(ds, dt)$.
 - Diffusion / morphing is modelled by a non-separable covariance in a Lagrangian reference frame: $(ds)^{2\gamma}$

$$o_L(d\mathbf{s}, dt) = \frac{1}{\left(\left(\frac{dt}{d}\right)^{2\delta} + 1\right)} \cdot \exp\left(-\frac{\left(\frac{d\mathbf{s}}{c}\right)^{2\delta}}{\left(\left(\frac{dt}{d}\right)^{2\delta} + 1\right)^{\beta\gamma}}\right)$$
14/32

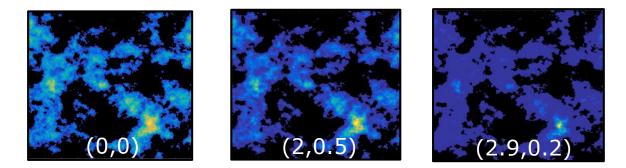
Stochastic rainfall model Parametrization

- Transform function:
 - Truncation => proportion of dry areas: $R_m(s,t) = 0$ if $Y(s,t) \le a_0$



• Transform function => skewness of the marginal distribution:

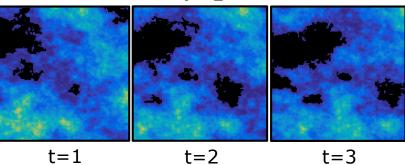
$$R_m(s,t) = \left(\frac{Y(s,t) - a_0}{a_1}\right)^{1/a_2} \text{ if } Y(s,t) > a_0$$

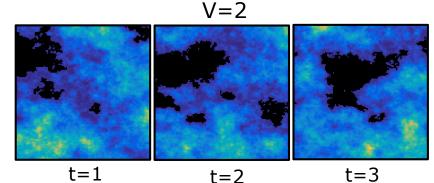


Stochastic rainfall model Parametrization

- Covariance of the latent field:
 - Advection vector: $\rho(ds V.dt, dt) = \rho_L(ds, dt)$.

$$V=1$$



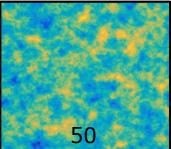


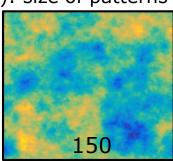
t=2

t=1

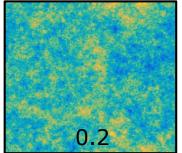
• Spatial dependencies:
$$\rho_L(ds, dt) = \frac{1}{\left(\left(\frac{dt}{d}\right)^{2\delta} + 1\right)} \cdot \exp\left(-\frac{\left(\frac{ds}{c}\right)^{2\gamma}}{\left(\left(\frac{dt}{d}\right)^{2\delta} + 1\right)^{\beta\gamma}}\right)$$

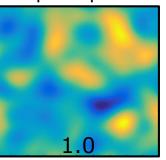
Range (parameter c): size of patterns





Shape (parameter Y): shape of patterns





Parameter inference

- The inference of model parameters allows to:
 - Calibrate the model.
 - Gain insights on the structure of rainfall.
- A Bayesian approach is selected to account for the uncertainty on model parameters.
 - Use a Metropolis-Hastings sampler, which requires:
 - > A statistical model to calibrate => stochastic rainfall model.
 - \blacktriangleright A calibration dataset => Rain rate time series.
 - The likelihood of observations given model parameters => Easy to derive thanks to the assumption of multivariate Gaussian latent field.

Metropolis-Hasting algorithm

1) Initialize model parameter
$$\theta \in \Theta$$

2) (a) Generate $\theta^* \sim q(\theta^*|\theta)$ and $u \sim U_{[0,1]}$ (q = proposition kernel)
(b) If $u < \min\left(1, \frac{l(R_m|\theta^*) \times q(\theta|\theta^*)}{l(R_m|\theta) \times q(\theta^*|\theta)}\right)$, then $\theta = \theta^*$
3) Iterate 2)

Stochastic rainfall model Parameter inference

• For large datasets, the calculation of the full-likelihood is computationally infeasible.

 $L(R_m|\theta) = -0.5[\log|\Sigma_{++}| - Z_+^t, \Sigma_{++}^{-1}, Z_+ - N_+, \log(2\pi)] \longrightarrow |.| and .^{-1} for large matrices$ $+\log\phi_{N_0}(a_0|\Sigma_{+0}\Sigma_{++}^{-1}, \Sigma_{00} + \Sigma_{+0}\Sigma_{++}^{-1}\Sigma_{0+}) \longrightarrow joint cdf\phi_{N_0}at many points$

- Approximations are required:
 - o For positive measurements, the likelihood is evaluated for small blocks.

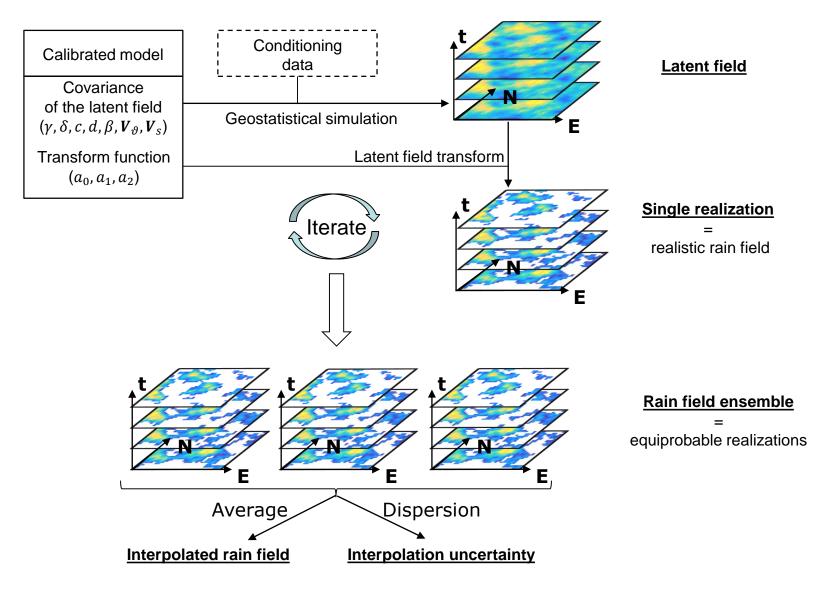
> Blockwise likelihood: $l(\theta|R_{I_+}) \approx \prod_{p=1}^{N_{\tau}} l(\theta|R_{BI_+})$

 For zero measurements, the censored values of the latent field are simulated by a Gibbs sampler within the Metropolis-Hasting algorithm.

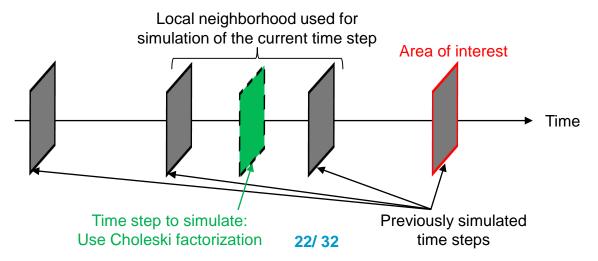
Parameter inference

In practice, the previous approximations don't worsen the inference of parameters: 1000m 10[†] Rain rate (mm/h) 20m 480m 1000m • Test on a synthetic case: Ο 3 Time (h) Spatial regularity: Y Temporal range: d Temporal regularity: δ Space-time interaction: β Spatial range: c A Probability 0.5↓ Pro<mark>b</mark>ability 0.5 ₀ 🕈 Probability Probability 0.5 True value **Full-likelihood** 0.25 0.25 0.25 0.25 0.25 (1day 22h) Block-likelihood 40 (3h 9min) 0. 0.0 5000 0 0.5 2500 0.5 50000 0 0 0.5 0 0 25000 1 1 Block-likelihood 4 Advection direction: S_P Advection velocity: Sv Anamorphosis: a₂ Measurement noise: σ_{c} Anamorphosis: a1 ● Probability 0.51 Probability 0.5 Probability 0.5 Probability 0.5 Probability (20min) 0.25 0.25 0.25 0.25 0.25 0.0 0.0 20 -50 0.9 0.25 0.75 0.5 0.5 0.5 0.75 0 10 50 0.1 0 19/32

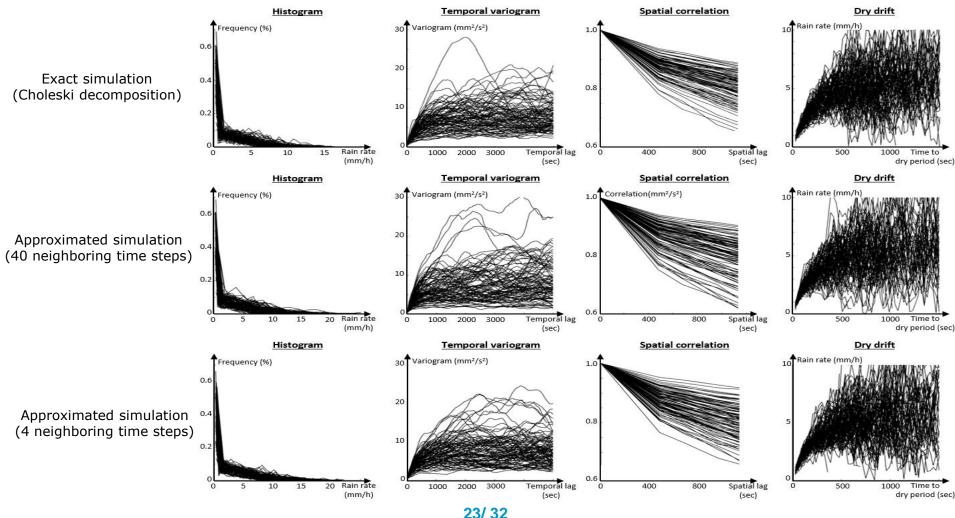
- The posterior distribution of the stochastic rainfall model can be used to generate synthetic rain fields, which are useful to:
 - Simulate rainfall over the space-time domain of interest.
 - Interpolate rain at any ungauged location (or time step):
 - Predicted value.
 - > Assessment of prediction error.
- Simulation method:
 - The latent field is first obtained by geostatistical simulation.
 - Synthetic rain fields are derived by censoring & transforming the latent field.



- For large space-time simulation grids, exact geostatistical simulations of the latent field are computationally unfeasible.
 - Require Choleski factorization of large covariance matrices.
- Usual fast simulation methods (turning bands, FFT-based, etc.) cannot be easily applied in the current context.
- An ad-hoc simulation method has been developed:
 - Choleski factorization in the space dimension.
 - Multigrid Sequential Gaussian Simulation (SGS) in the time dimension.

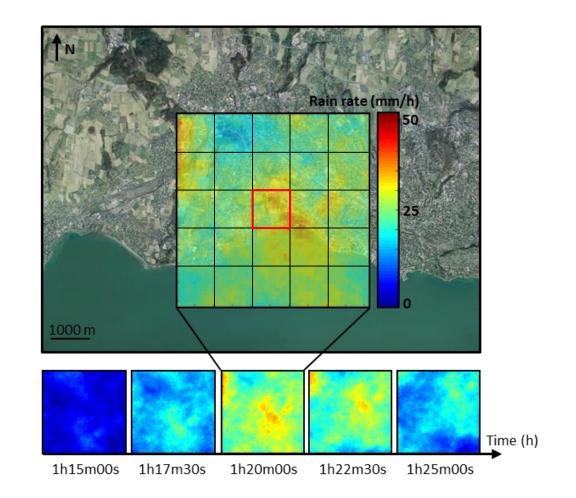


 In practice, the proposed simulation method does not worsen the reproduction of rainfall statistics.



Application

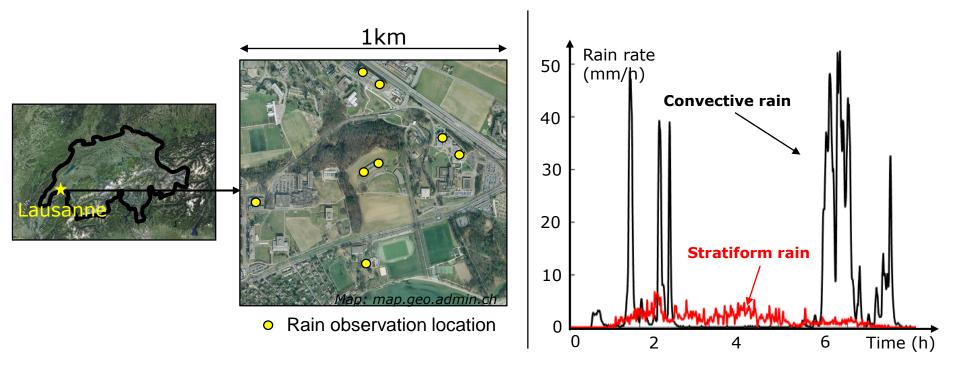
Question: What happens within a single radar pixel?



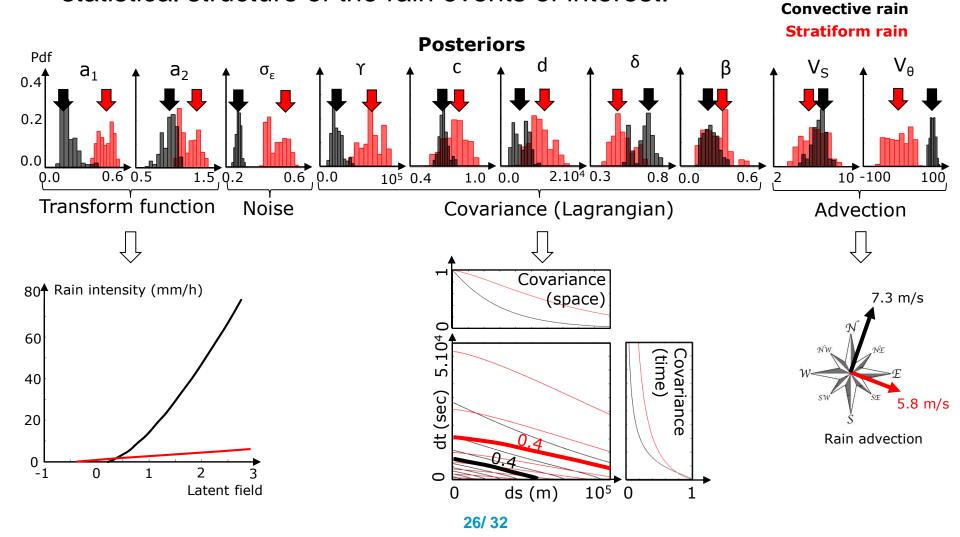
Application Experimental setup

- The proposed model is applied to two rain events in order to:
 - Assess the space-time structure of the rain events (parameter inference step).
 - Generate synthetic rain fields conditioned to observations (simulation step).
- Experimental setup:

• Rain events of interest:

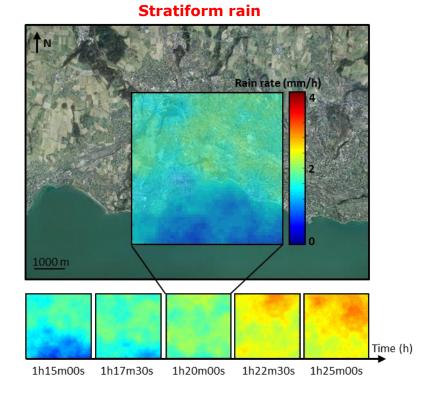


 Model parameters are inferred to assess the space – time – intensity statistical structure of the rain events of interest.

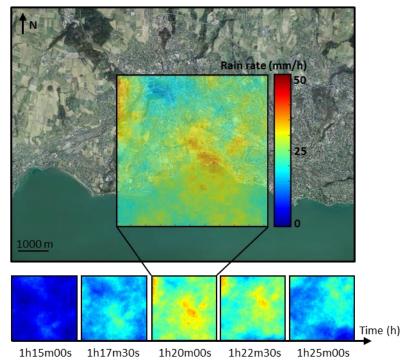


Application *Simulation of synthetic rain fields*

The inferred model parameters lead to different simulated rain fields.



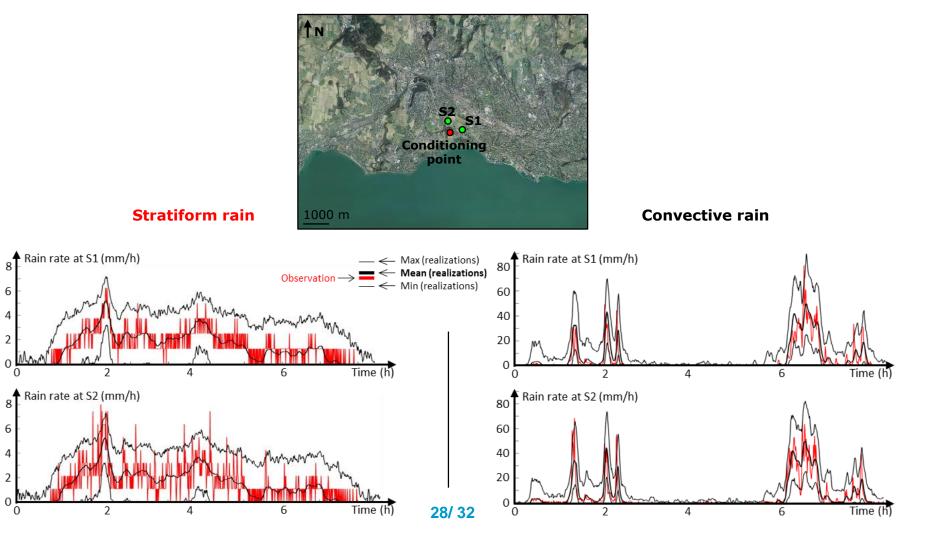
- Gentle rain, low intermittency.
- Low space-time variability.
- Eastward advection.



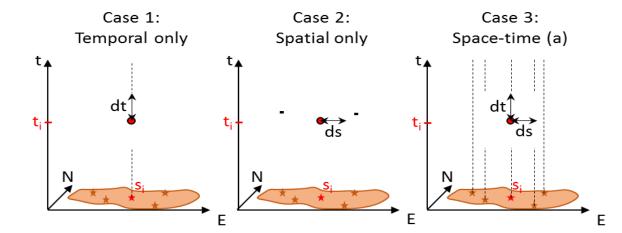
Convective rain

- Heavy rain, intermittent.
- High space-time variability.
- Northward advection.

 An ensemble of 100 realizations can be used to predict rainfall at ungauged locations and to assess the prediction uncertainty.



• Cross-validation to assess the reliability of rainfall prediction:

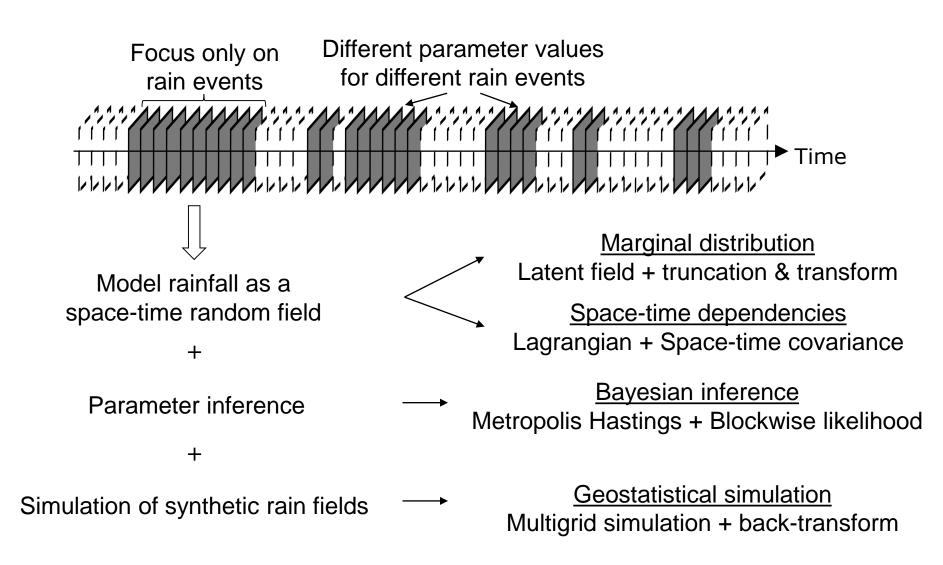


Stratiform rain	C1	C2	C3	Convective rain	C1	C2	C3
dt = 30s	MAE = 0.70	MAE = 0.69	MAE = 0.71	dt = 30s	MAE = 1.79	MAE = 2.26	MAE = 2.03
ds = 50m	Bias = -0.01	Bias = -0.001	Bias = -0.06	ds = 50m	Bias = -0.02	Bias = 0.30	Bias = 0.29
dt = 300s	MAE = 0.74	MAE = 0.70	MAE = 0.75	dt = 300s	MAE = 3.83	MAE = 1.99	MAE = 2.28
ds = 500m	Bias = -0.01	Bias = -0.002	Bias = -0.006	ds = 500m	Bias = 0.16	Bias = 0.20	Bias = 0.35

MAE: Mean Absolute Error

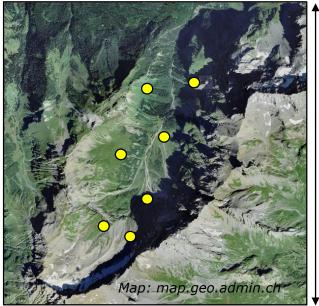
- Almost unbiased prediction.
- Low prediction errors.
- Positive contribution of the complex space-time covariance function.

Model summary

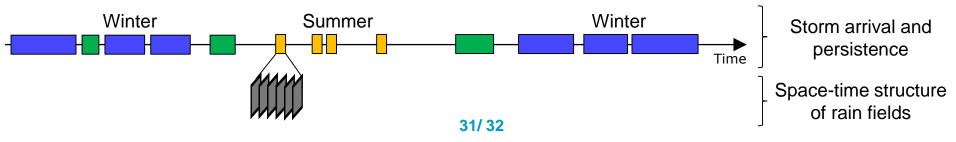


Perspectives

- Apply the proposed framework to a larger network:
 - o 6km x 6km (Vallon de Nant, Swiss Alps).
 - Altitude: 1300 2200m => Orographic effects?
 - Application to mountain hydrology.



- Model storm arrival and persistence processes:
 - Account for seasonality in rainfall structure (rain types).
 - Application: stochastic rainfall generation for the whole year.



Conclusion

- Drop counting rain gauges allow to monitor local rain fields:
 - High resolution (0.01mm of rain) => high temporal resolution (30 sec).
 - \circ Low cost, easy to set up => dense networks.
- A local scale stochastic rainfall model has been proposed to handle the features of rainfall arising from HR rain gauge measurements:
 - Rain intermittency and skewed distribution of positive rain rates.
 - Rain advection.
 - Temporal morphing of rain patterns.
- This model can be used to:
 - Investigate space-time dependencies within local rain fields.
 - Estimate HR rain fields over small catchments (Mountain / urban hydrology).

Thank you for your attention

- Drop counting rain gauges allow to monitor local rain fields.
- A Stochastic rainfall model has been proposed to handle these data.
- Applications: Investigate space-time dependencies within rain fields.

- Estimate HR rain fields over small catchments.