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Introduction

• When observed at the local scale, rainfall appears highly variable 

in space and in time within rain events.

=> How can we measure and reproduce the statistical behavior 

of rainfall?
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Introduction

• How can we measure and reproduce the statistical behavior of 

rainfall?

o Focus only on rain events.

o Within rain events, pay a particular attention to space-time dependencies:

Time

Rain 
event

Dry 
period

 Spatial correlation? 
 Spatial patterns?
 Nature of rain / no-rain transitions?

 Temporal correlation? 
 Morphing of spatial patterns?
 Advection of rain storm?
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Introduction

• How can we measure and reproduce the statistical behavior of 

rainfall?

=> Use a stochastic rainfall model.

o Input data: rain rate time series (high resolution rain gauges).

o Parameter inference:

Calibration of the model.

 The calibrated model gives insights on the structure of rainfall.

o Simulation: generate synthetic rain fields which reproduce the structure of 

observed rain fields.
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Instruments

Questions: - How to measure local rain fields?

- Which data to feed a local scale stochastic rainfall model?
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Instruments 
Drop counting rain gauge

• Drop counting rain gauge (Pluvimate).

• Operation principle: counts calibrated drops instead of bucket tips.
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Instruments
High resolution

Watchdog 1120

 Operation principle: Tipping bucket.

 Rain height resolution: 0.1-0.25mm.

 Sampling rate: 5 – 10 min.

Pluvimate

 Operation principle: Drop counting.

 Rain height resolution: 0.01mm.

 Sampling rate: 30sec – 1min.
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Instruments
Calibration
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Instruments 
Low cost and easy to set up

• Relatively cheap (~500$ per device).

• Easy to set up (light, no moving parts, low power consumption).

• Few maintenance (except low storage capacity).

=> Dense networks with many gauges, even in mountains.
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Instruments 
Experimental network

Map: map.geo.admin.ch

1
k
m

Lausanne
 8 rain gauges.

 1km x 1km.

 Sampling rate: 30sec.
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Instruments 
Observed rainfall structure
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• Mass of zero measurements.

• Smooth dry/wet transitions.
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• Spatial variability of time series.

• More similarities for close gauges.

• Time shift for distant gauges.

Single site observations Multi-sites observations

Map: map.geo.admin.ch
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Stochastic rainfall model

𝑅𝑚 = f θ
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S1
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Observed structure

Conceptual model

Parametrization

Question: How to choose a stochastic model which can handle the 

features of rainfall arising from Pluvimate data? 
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E
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t Observations:

Stochastic rainfall model 
Conceptual model

Time-shift

Spatial variability of 
rain rate time series
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Advection 
of rain patterns

Temporal morphing of 
rain patterns

Conceptual 
model:

Stochastic rainfall model 
Conceptual model
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Stochastic rainfall model 
Overall modelling approach

• Latent Gaussian random field.

• Precipitation arise from the latent field                                     

through truncation and transformation.

• Rainfall dynamics is modeled by an asymmetric and non-separable 

covariance function.

Latent field value
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Stochastic rainfall model 
Parametrization

• Latent Gaussian random field:

o Spatio-temporal coordinates: (𝒔, 𝑡).

o Standardized and stationary multivariate Gaussian random field: 𝑌 𝒔, 𝑡 .

• Precipitation arise from the latent field                                     

through truncation and transformation:

• Rainfall dynamics is modeled by an asymmetric and non-separable 

covariance function 𝜌(𝒔, 𝑡):

o Advection is modeled by a single vector V: 𝜌 𝑑𝒔 − 𝑉. 𝑑𝑡, 𝑑𝑡 = 𝜌𝐿(𝑑𝒔, 𝑑𝑡).

o Diffusion / morphing is modelled by a non-separable covariance in a Lagrangian

reference frame:

𝑅𝑚 𝒔, 𝑡 = 0 𝑖𝑓 𝑌 𝒔, 𝑡 ≤ 𝑎0

𝑅𝑚 𝒔, 𝑡 =
𝑌 𝒔, 𝑡 − 𝑎0
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. exp −

𝑑𝒔
𝑐

2𝛾

𝑑𝑡
𝑑

2𝛿

+ 1

𝛽𝛾

14/ 32



Stochastic rainfall model
Parametrization

• Transform function:

o Truncation => proportion of dry areas:

o Transform function => skewness of the marginal distribution:

𝑅𝑚 𝒔, 𝑡 = 0 𝑖𝑓 𝑌 𝒔, 𝑡 ≤ 𝑎0

𝑅𝑚 𝒔, 𝑡 =
𝑌 𝒔, 𝑡 − 𝑎0

𝑎1

1/𝑎2

𝑖𝑓 𝑌 𝒔, 𝑡 > 𝑎0

-1.5 0.0 1.5

(0,0) (2,0.5) (2.9,0.2)
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Stochastic rainfall model
Parametrization

• Covariance of the latent field:

o Advection vector: 𝜌 𝑑𝒔 − 𝑉. 𝑑𝑡, 𝑑𝑡 = 𝜌𝐿(𝑑𝒔, 𝑑𝑡).

o Spatial dependencies: 𝜌𝐿(𝑑𝒔, 𝑑𝑡) =
1

𝑑𝑡
𝑑

2𝛿

+ 1
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𝑑𝒔
𝑐
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+ 1
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Range (parameter c): size of patterns
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Shape (parameter ϒ): shape of patterns
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t=1 t=2 t=3 t=1 t=2 t=3
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• The inference of model parameters allows to:

o Calibrate the model.

o Gain insights on the structure of rainfall.

• A Bayesian approach is selected to account for the uncertainty on 

model parameters.

o Use a Metropolis-Hastings sampler, which requires:

 A statistical model to calibrate => stochastic rainfall model.

 A calibration dataset => Rain rate time series.

 The likelihood of observations given model parameters => Easy to derive thanks to 

the assumption of multivariate Gaussian latent field.

Stochastic rainfall model 
Parameter inference

1) Initialize model parameter θ ∈ Θ
2) (a) Generate 𝜃∗~𝑞(𝜃∗|𝜃) and 𝑢~𝑈[0,1] (q = proposition kernel)

(b) If 𝑢 < min 1,
𝑙 𝑅𝑚|𝜃

∗ × 𝑞(𝜃|𝜃∗)

𝑙 𝑅𝑚 𝜃 ) × 𝑞(𝜃∗|𝜃)
, then θ = 𝜃∗

3) Iterate 2)

Metropolis-Hasting algorithm
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• For large datasets, the calculation of the full-likelihood is 

computationally infeasible.

• Approximations are required:

o For positive measurements, the likelihood is evaluated for small blocks.

 Blockwise likelihood: 𝑙 𝜃|𝑅𝐼+ ≈  𝑝=1
𝑁𝜏 𝑙 𝜃|𝑅𝐵𝐼+

o For zero measurements, the censored values of the latent field are simulated 

by a Gibbs sampler within the Metropolis-Hasting algorithm. 

Stochastic rainfall model 
Parameter inference

𝐿 𝑅𝑚|𝜃 = −0.5 log Σ++ − 𝑍+
𝑡 . Σ++

−1 . 𝑍+ − 𝑁+. log 2𝜋

+log𝜙𝑁0(𝑎0|Σ+0Σ++
−1 , Σ00 + Σ+0Σ++

−1Σ0+)

. 𝑎𝑛𝑑 .−1 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠

𝑗𝑜𝑖𝑛𝑡 𝑐𝑑𝑓𝜙𝑁0𝑎𝑡 𝑚𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡𝑠
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• In practice, the previous approximations don’t worsen the 

inference of parameters:

o Test on a synthetic case:

Stochastic rainfall model 
Parameter inference

Full-likelihood
(1day 22h)

Block-likelihood 40
(3h 9min)

Block-likelihood 4
(20min)

True value
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• The posterior distribution of the stochastic rainfall model can be 

used to generate synthetic rain fields, which are useful to:

o Simulate rainfall over the space-time domain of interest.

o Interpolate rain at any ungauged location (or time step):

 Predicted value.

 Assessment of prediction error.

• Simulation method:

o The latent field is first obtained by geostatistical simulation.

o Synthetic rain fields are derived by censoring & transforming the latent field.

Stochastic rainfall model 
Simulation
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Stochastic rainfall model 
Simulation

Transform function 

(𝑎0, 𝑎1, 𝑎2)

Covariance 

of the latent field
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Average

Interpolation uncertainty
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• For large space-time simulation grids, exact geostatistical 

simulations of the latent field are computationally unfeasible.

o Require Choleski factorization of large covariance matrices.

• Usual fast simulation methods (turning bands, FFT-based, etc.) 

cannot be easily applied in the current context.

• An ad-hoc simulation method has been developed:

o Choleski factorization in the space dimension.

o Multigrid Sequential Gaussian Simulation (SGS) in the time dimension.

Stochastic rainfall model 
Simulation

Previously simulated 

time steps

Time step to simulate: 

Use Choleski factorization

Time

Area of interest

Local neighborhood used for 

simulation of the current time step
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• In practice, the proposed simulation method does not worsen the 

reproduction of rainfall statistics.

Stochastic rainfall model 
Simulation

Exact simulation 
(Choleski decomposition)

Approximated simulation 
(40 neighboring time steps)

Approximated simulation 
(4 neighboring time steps)
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Question: What happens within a single radar pixel?
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Application 



• The proposed model is applied to two rain events in order to:

o Assess the space-time structure of the rain events (parameter inference step).

o Generate synthetic rain fields conditioned to observations (simulation step).

• Experimental setup:                               

Map: map.geo.admin.ch

Rain observation location

1km

Time (h)

Rain rate 
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• Rain events of interest:                               

Stratiform rain

Convective rain

Lausanne

Application 
Experimental setup
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Application 
Parameter inference

• Model parameters are inferred to assess the space – time – intensity 

statistical structure of the rain events of interest.
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Application 
Simulation of synthetic rain fields

• The inferred model parameters lead to different simulated rain fields.

Convective rainStratiform rain

o Heavy rain, intermittent.

o High space-time variability.

o Northward advection.                               

o Gentle rain, low intermittency.

o Low space-time variability.

o Eastward advection.                               
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Application 
Rain prediction

• An ensemble of 100 realizations can be used to predict rainfall at 

ungauged locations and to assess the prediction uncertainty.

Convective rainStratiform rain

N

S1
S2

N

1000 m

Conditioning 
point
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Application 
Cross-validation

• Cross-validation to assess the reliability of rainfall prediction: 

o Almost unbiased prediction.

o Low prediction errors.

o Positive contribution of the complex space-time covariance function.

Convective 
rain

Stratiform
rain

C1 C2 C3

dt = 30s

ds = 50m

MAE = 0.70

Bias = -0.01

MAE = 0.69

Bias = -0.001

MAE = 0.71

Bias = -0.06

dt = 300s

ds = 500m

MAE = 0.74

Bias = -0.01

MAE = 0.70

Bias = -0.002

MAE = 0.75

Bias = -0.006

C1 C2 C3

dt = 30s

ds = 50m

MAE = 1.79

Bias = -0.02

MAE = 2.26

Bias = 0.30

MAE = 2.03

Bias = 0.29

dt = 300s

ds = 500m

MAE = 3.83

Bias = 0.16

MAE = 1.99

Bias = 0.20

MAE = 2.28

Bias = 0.35

MAE: Mean Absolute Error
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Model summary  

Time

Focus only on 

rain events

Model rainfall as a 

space-time random field

Parameter inference

Marginal distribution

Latent field + truncation & transform

Space-time dependencies

Lagrangian + Space-time covariance

Bayesian inference

Metropolis Hastings + Blockwise likelihood 

Simulation of synthetic rain fields
Geostatistical simulation

Multigrid simulation + back-transform

+

+

Different parameter values 

for different rain events
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Perspectives  

• Apply the proposed framework to a larger network:

o 6km x 6km (Vallon de Nant, Swiss Alps).

o Altitude: 1300 – 2200m => Orographic effects?

o Application to mountain hydrology.

• Model storm arrival and persistence processes:

o Account for seasonality in rainfall structure (rain types).

o Application: stochastic rainfall generation for the whole year.

Time

Winter Summer Storm arrival and 

persistence

Winter

Space-time structure 

of rain fields

Map: map.geo.admin.ch

6
k
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Conclusion  

• Drop counting rain gauges allow to monitor local rain fields:

o High resolution (0.01mm of rain) => high temporal resolution (30 sec).

o Low cost, easy to set up => dense networks.

• A local scale stochastic rainfall model has been proposed to handle 

the features of rainfall arising from HR rain gauge measurements:
o Rain intermittency and skewed distribution of positive rain rates.

o Rain advection.

o Temporal morphing of rain patterns.

• This model can be used to:
o Investigate space-time dependencies within local rain fields.

o Estimate HR rain fields over small catchments (Mountain / urban hydrology).
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Thank you for your attention

• Drop counting rain gauges allow to monitor local rain fields.

• A Stochastic rainfall model has been proposed to handle these data.

• Applications: - Investigate space-time dependencies within rain fields.

- Estimate HR rain fields over small catchments.  
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