

# Bias correction with harmonic functions – Exploiting the smoothness in time

M. Fischer, H.W. Rust, U. Ulbrich  
Institute of Meteorology, FU Berlin

## 1. Introduction

Systematic shifts between climate model simulations and observed data typically hamper their direct use for impact studies: a post-processing in form of a bias correction is needed. Typically, the difference in monthly means are added to the simulations. Here, we suggest using harmonic functions to get a smooth seasonal cycle and to adjust each day in the year individually.

## 2. Observation data

| Research Site | Data   | variables                   |
|---------------|--------|-----------------------------|
| Bergen        | WFDEI* | all                         |
| Veluwe        | WFDEI* | all                         |
| Wupper        | WFDEI* | all                         |
| Badalona      | WFDEI* | all                         |
| Tagus River   | WFDEI* | all                         |
| Stations      |        | $T_1, T_2, T_{mean}, RR, v$ |

\*WFDEI: WATCH forcing data ERA-Interim [1], [2] interpolated to simulation's grid

## 3. Implementation

This bias correction approach is currently implemented in the *DECO* plugin of *FREVA* evaluation system (<https://freva.met.fu-berlin.de/>) based on the R package *VGAM* [3].

## 7. Conclusion

We use harmonic functions to obtain a smooth seasonal cycle of simulation and observed data instead of adjusting with the climatological mean of each month. This implies:

- **individual bias correction** for each day → no artificial jumps at the end of a month
- consistent approach for **several parameters** using different distributions
- **physical consistencies**: no negative values for positive parameters,  $T_{min} < T_{max}$

## 8. Outlook

- **correcting variance** of each distribution (VGLM)
- **cross-validated model selection** for more robustness for future datasets

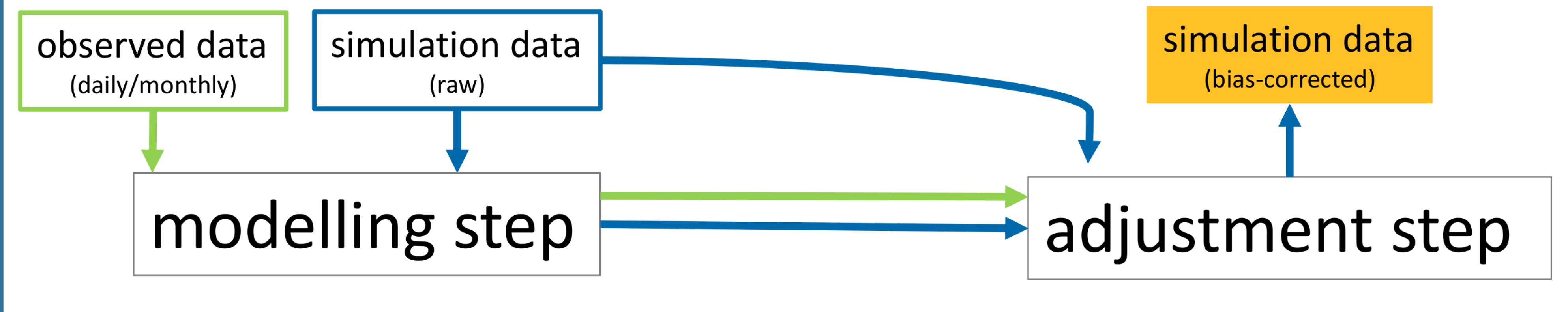
## References

- [1] Weedon et al., 2014: *The WFDEI meteorological forcing data set: Watch forcing data methodology applied to ERA-Interim reanalysis data*, Water Resour. Res., 50(9):7505-7514
- [2] Rust et al., 2015: *Discontinuous Daily Temperatures in the WATCH Forcing Datasets*. J. Hydrometeo 16.1: 465-472.
- [3] Yee, 2015: *Vector Generalized Linear and Additive Models: With an Implementation in R.*, Springer Series in Statistics
- [4] P. McCullagh and J. Nelder, 1989: *Generalized Linear Models*, CRC Press, Boca Raton, Fla, 2 edition
- [5] M. B. Priestley, 1992: *Spectral Analysis and Time Series*, Academic Press, London
- [6] Wilks, 2011: *Statistical Methods in Atmospheric Sciences*, Vol. 100, Academic press

## 4. Distributional assumptions

| variable    | long name                           | distribution | min/max temperature                                          |
|-------------|-------------------------------------|--------------|--------------------------------------------------------------|
| $T_1$       | $T_{max} - T_{min}$                 | log-Gaussian | • transformation to ensure $T_{min} < T_{max}$               |
| $T_2$       | $T_{max} + T_{min}$                 | Gaussian     | $T_1 = T_{max} - T_{min}$                                    |
| $T_{mean}$  | mean surface temperature            | Gaussian     | $T_2 = T_{max} + T_{min}$                                    |
| $v$         | near-surface wind speed             | log-Gaussian | • back-transforming after bias-correction of $T_1$ and $T_2$ |
| $P$         | surface air pressure                | Gaussian     | • positive parameters: all except $T_2$ and $T_{mean}$       |
| $LW_{down}$ | longwave incoming radiation         | log-Gaussian |                                                              |
| $SW_{down}$ | shortwave incoming radiation        | log-Gaussian |                                                              |
| $Q_{air}$   | near-surface specific humidity      | log-Gaussian |                                                              |
| $RR$        | precipitation amount for rainy days | Gamma        |                                                              |

## 5. Modelling approach



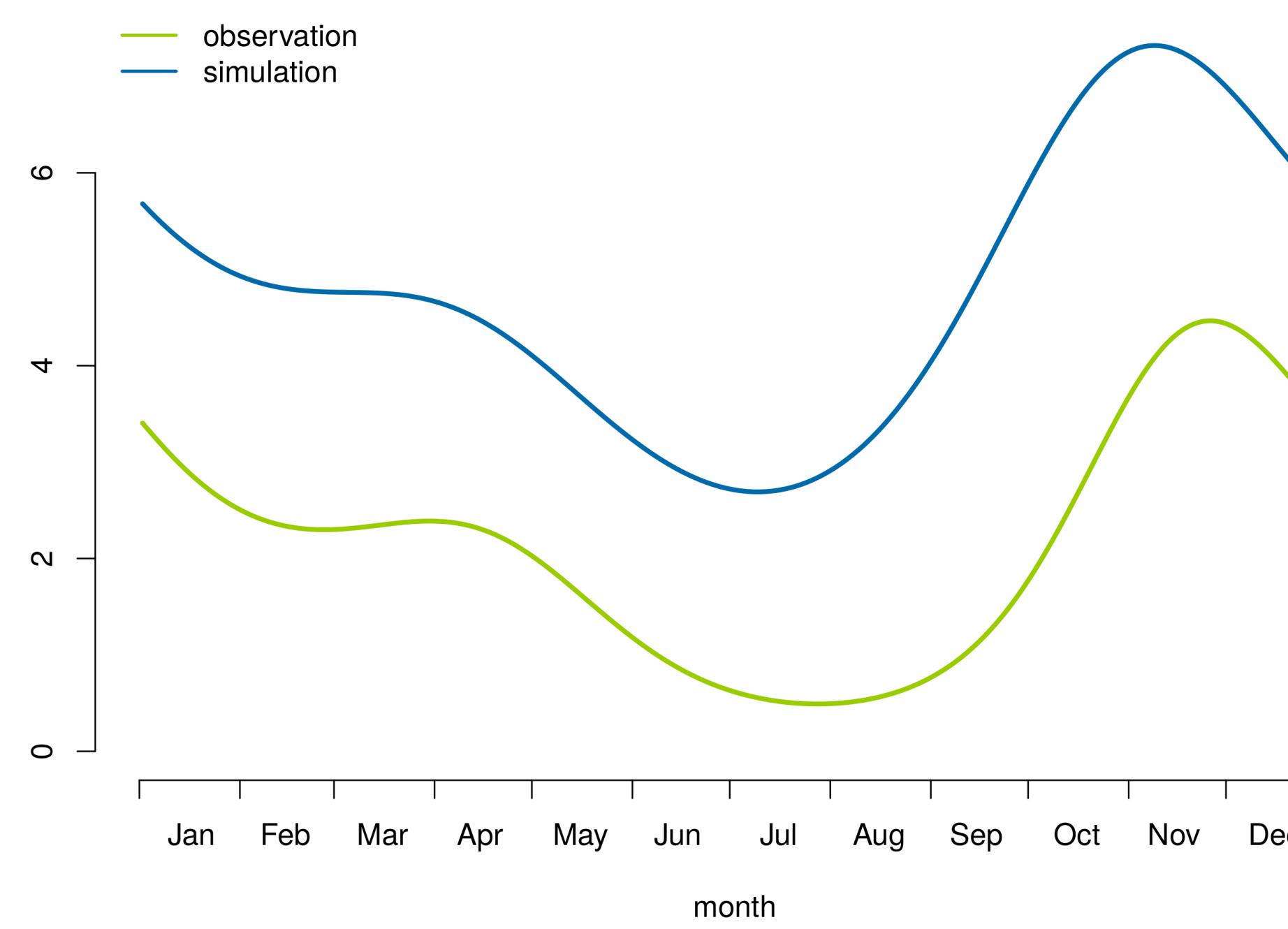
- using generalized linear models [4]
- seasonal cycle: smooth function over days of the year [5] for expected value

$$\mu_t = \mu_0 + \sum_{k=1}^K (\mu_{ks} \sin(k\omega t) + \mu_{kc} \cos(k\omega t))$$

with  $\omega = 2\pi/365.25$ ,  $t$  as the day of the year (0,...,365) and order of harmonic function  $K$  (monthly data:  $t$  the center day of each month)

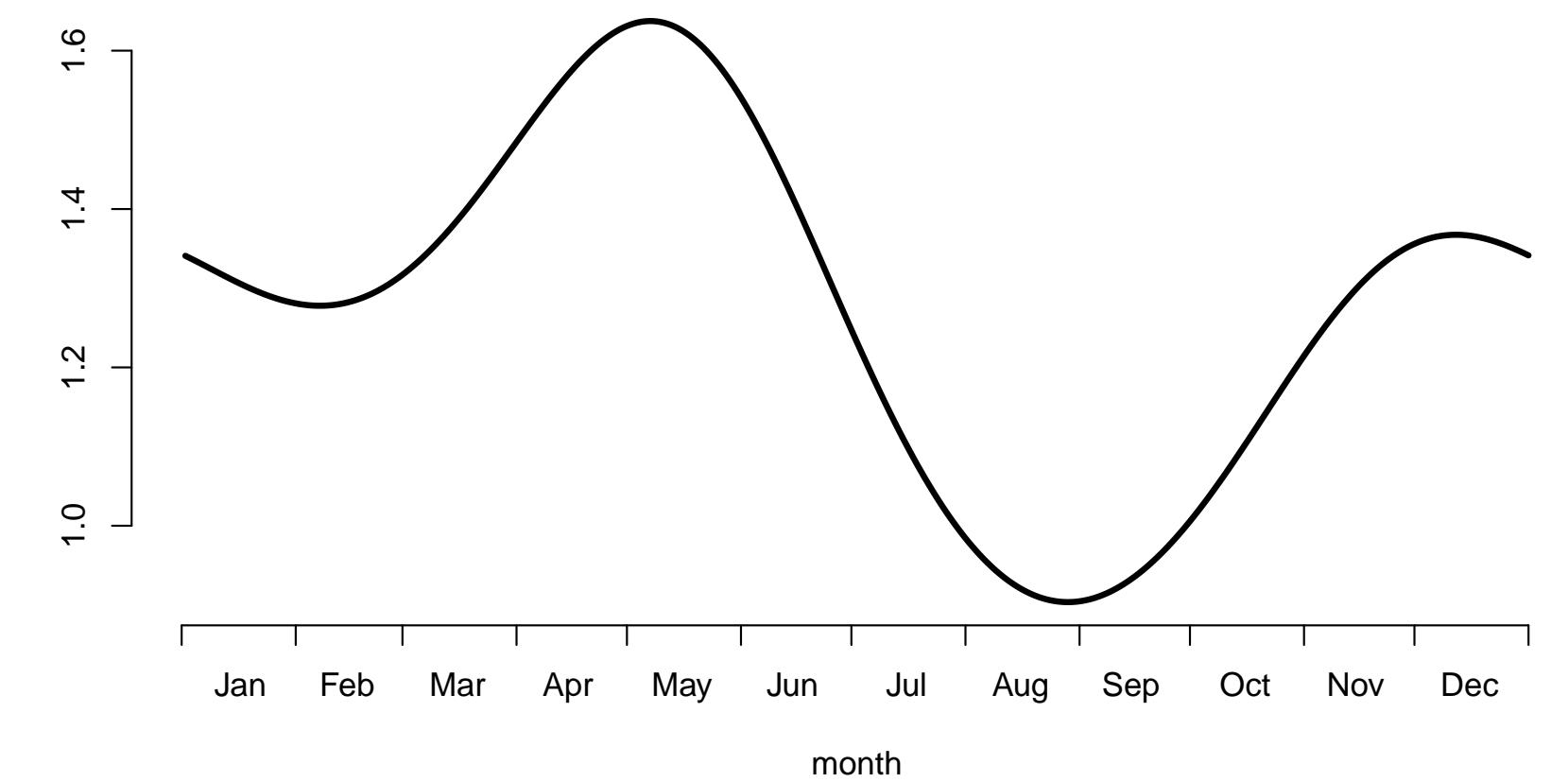
- selection of  $K$  (only for observed data): BIC [6]

→ **output**: seasonal cycles for expectation



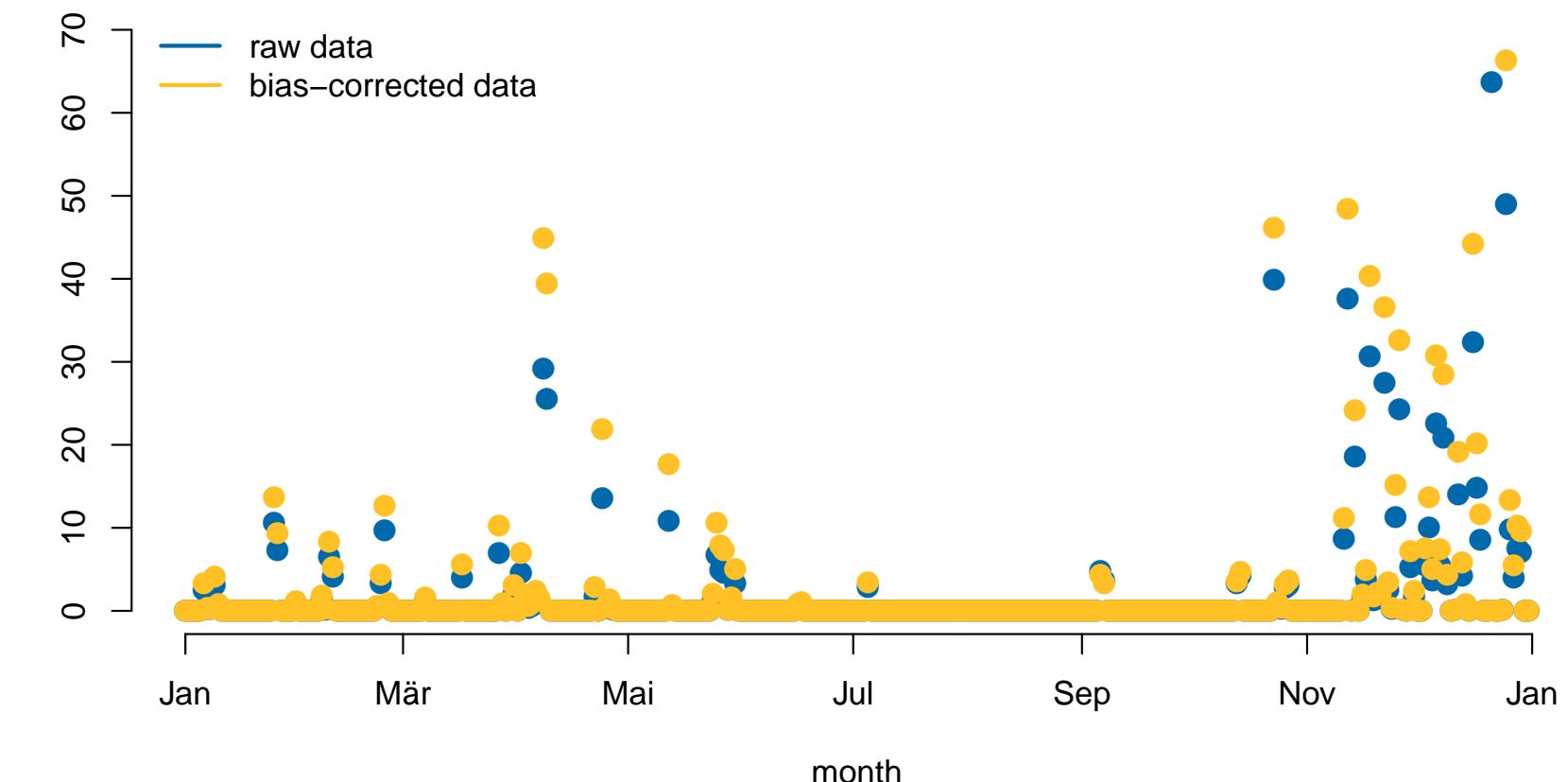
- Difference between seasonal cycles of observation  $\bar{o}$  and simulation  $\bar{s}$

$$\Delta(t) = \begin{cases} \bar{o}(t) - \bar{s}(t) & \text{for Gaussian} \\ \frac{\bar{o}(t)}{\bar{s}(t)} & \text{for others} \end{cases}$$



- Obtain bias-corrected values

$$x_{corr} = \begin{cases} x(t) + \Delta(t) & \text{for Gaussian} \\ x(t) \cdot \Delta(t) & \text{for others} \end{cases}$$



## 6. Example: Bias Correction for $T_{max}$ and $T_{min}$

→ analyses for one grid point at Wupper research site

