


 

P
ro
b
ab

ili
ty

d
e
n
si
ty

Observable

Calibration of decadal ensemble predictions

A. Pasternack, H. W. Rust, U. Ulbrich, M. A. Liniger, J. Bhend
Freie Universität Berlin

Berlin, October, 5th, 2016



Content

É Probabilistic forecasts

É What is a good forecast

É Re-calibrating an example forecast

É Tailor re-calibration methods to decadal predictions

É Apply re-calibration methods to decadal predictions

É Validation

,

Decadal
Climate Prediction A. Pasternack, FU Berlin, Calibration, 05.10.2016 2



Probabilistic forecast

,

Decadal
Climate Prediction A. Pasternack, FU Berlin, Calibration, 05.10.2016 3



Probabilistic forecast

,

Decadal
Climate Prediction A. Pasternack, FU Berlin, Calibration, 05.10.2016 3



Probabilistic forecast

,

Decadal
Climate Prediction A. Pasternack, FU Berlin, Calibration, 05.10.2016 3



Probabilistic forecast

,

Decadal
Climate Prediction A. Pasternack, FU Berlin, Calibration, 05.10.2016 3



What is a good probabilistic forecast?

„... an important goal is to maximize sharpness without sacrificing
calibration.“ (Wilks, 2011; Gneiting, 2007; Murphy and Winkler, 1987)
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What is a good probabilistic forecast?

„... an important goal is to maximize sharpness without sacrificing
calibration.“ (Wilks, 2011; Gneiting, 2007; Murphy and Winkler, 1987)

Sharpness

Forecasts take a risk, i.e. are frequently different from the climatological
value?

Calibration or reliability

Probabilistic forecasts „mean what they say“, e.g. for days with a forecast
of 30% chance of rain, we expect a relative frequency of 30% rainy days.

„Ensemble members are reliable if the MSE between the ensemble mean
and observations is identical to the time mean intra-ensemble variance.“
(Palmer et al., 2006)
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What About the Reliability of our Forecasts?

„... ensemble distributions typically underestimate the true forecast
uncertainty and tend to be overconfident ...“ (e.g. Weigel, 2009)
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Observed relative frequency distribution
is broader than forecasted distribution
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Observed relative frequency distribution
is broader than forecasted distribution

−→ adjust ensemble spread
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Probabilistic forecast
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Reliable forecast:
É 80% of ens. spread should include 80% of

observations
É only 50% are covered

What is wrong?
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1. forecast is biased (uncond.)

Ensemble prediction:
fi(t) = μ(t) + εi(t) i = 1...M
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Ensemble prediction:
fi(t) = α + βμ(t) + εi(t) i = 1...M
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1. forecast is biased (uncond.)
(shift ensemble mean)

2. forecast is conditionally biased
(scale ensemble mean)

3. forecast is not reliable
(scale ensemble spread)

4. re-calibrated forecast

Re-calibrated ensemble:
fCal
i (t) = α + βμ(t) + γεi(t) i = 1...M



Re-calibrating an example forecast

State of the art:

Re-calibration is used in
É weather prediction
É seasonal prediction
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Re-calibrating an example forecast

State of the art:

Re-calibration is used in
É weather prediction
É seasonal prediction

Tasks for CALIBRATION:

Tailor re-calibration methods to decadal predictions

É limited number of hindcasts
É climate trend
É dependence on lead years (drift)
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Tailor re-calibration methods to decadal
predictions

Ensemble prediction

fi(t, τ) = μ(t, τ) + εi(t, τ)

i = 1...M ensemble member, t = start year, τ = lead year

with

μ(t, τ) = E(fi(t, τ))

Re-calibrated ensemble

fCal
i (t, τ) = α(t, τ) + β(t, τ)μ(t, τ) + γ(t, τ)εi(t, τ)

find α(t, τ), β(t, τ) and γ(t, τ) such that the ensemble is perfectly
calibrated with maximum sharpness

1) α: bias and drift, 2) β: conditional bias, 3) γ: ensemble spread
,
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General idea

Minimize continuous ranked probability score (crps) between model fCal

and observation O (Gneiting et al. 2005):
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crps1 = 0.12, crps2 = 0.73, crps3 = 0.35

crps measures:
É reliability
É sharpness



General idea (2)

If the forecast distribution is Gaussian:

−→ fCal
i (t, τ) ∼ N (α(t, τ) + β(t, τ)μ(t, τ), γ(t, τ)2σ2(t, τ))
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i (t, τ) ∼ N (α(t, τ) + β(t, τ)μ(t, τ), γ(t, τ)2σ2(t, τ))

...the crps simplifies to:

crps(N (μ, σ2), o) = σ{ o−μ
σ [2Φ(

o−μ
σ )− 1] + 2φ(

o−μ
σ )− 1p

π
}

μ =ens. mean, σ =ens. std., o =observation, Φ,φ = CDF and PDF of stand. norm. distr.
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If the forecast distribution is Gaussian:

−→ fCal
i (t, τ) ∼ N (α(t, τ) + β(t, τ)μ(t, τ), γ(t, τ)2σ2(t, τ))

...the crps simplifies to:

crps(N (μ, σ2), o) = σ{ o−μ
σ [2Φ(

o−μ
σ )− 1] + 2φ(

o−μ
σ )− 1p

π
}

μ =ens. mean, σ =ens. std., o =observation, Φ,φ = CDF and PDF of stand. norm. distr.

The average score over all k pairs of forecasts and observations is:

Γ(N (α + βμ, γ2σ2), o) = 1
k

k
∑

j=1

q

γ2σ2
j {Zj[2Φ(Zj)− 1] + 2φ(Zj)− 1p

π
},

Zj =
Oj−(α+βμj)
Æ

γ2σ2
j
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General idea (2)

If the forecast distribution is Gaussian:

−→ fCal
i (t, τ) ∼ N (α(t, τ) + β(t, τ)μ(t, τ), γ(t, τ)2σ2(t, τ))

...the crps simplifies to:

crps(N (μ, σ2), o) = σ{ o−μ
σ [2Φ(

o−μ
σ )− 1] + 2φ(

o−μ
σ )− 1p

π
}

μ =ens. mean, σ =ens. std., o =observation, Φ,φ = CDF and PDF of stand. norm. distr.

The average score over all k pairs of forecasts and observations is:

Γ(N (α + βμ, γ2σ2), o) = 1
k

k
∑

j=1

q

γ2σ2
j {Zj[2Φ(Zj)− 1] + 2φ(Zj)− 1p

π
},

Zj =
Oj−(α+βμj)
Æ

γ2σ2
j

α = α(t, τ) = (a0 + a1t) + (a2 + a3t)τ + (a4 + a5t)τ2 + (a6 + a7t)τ3 + ...
β = β(t, τ) = (b0 + b1t) + (b2 + b3t)τ + (b4 + b5t)τ2 + (b6 + b7t)τ3 + ...
γ = γ(t, τ) = (c0 + c1t) + (c2 + c3t)τ + (c4 + c5t)τ2 + (c6 + c7t)τ3 + ...

−→ find an a0, b0, c0, ..., a7, b7, c7 that minimize Γ
,
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Apply re-calibration method to decadal
prediction

Example: Surface Temperature
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Data overview
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Data:
É Surface temperature

over the North Atlantic region
É Model: MPI-ESM-LR,

Prototype (GECCO2)
É 15 ensemble members
É Initialisation years: 1961-2000
É Annual mean
É Reference: NCEP 20CR

Figure: ST time mean for NCEP 20CR



Apply re-calibration method to decadal
prediction

,
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Before:

After:



Validation
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Summary

What is a good probabilistic forecast?

„... an important goal is to maximize sharpness without sacrificing
reliability.“ (Wilks, 2011; Gneiting, 2007; Murphy and Winkler, 1987)

É CRPS minimization method by Gneiting et al. 2005 addresses to
reliability and sharpness for seasonal prediction.

É The developed extension to decadal predictions also includes a lead
time dependent drift correction.

Validation

É CRPS method is mostly superior to drift correction and climatology
w.r.t. predictive skill.

É Sharpness will be decreased to obtain good reliability.
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Thank you for your attention!
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Appendix
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Spatial Analyses (1)
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CRPSS: Re-calibrated vs. Climatology (cross validation)

lead year: 2-5 lead year: 2-9

lead year: 6-9



Spatial Analyses (2)
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CRPSS: Re-calibrated vs. Drift Corrected (cross validation)

lead year: 2-5 lead year: 2-9

lead year: 6-9


