Prof. Dr. Frank Postberg

postberg_sw

Head of Planetary Sciences and Remote Sensing

Professorship Planetary Sciences

Address
Malteserstr. 74-100
Room D-233
12249 Berlin
Fax
+49 30 838 470575 (Office)
Email
frank.postberg[at]fu-berlin.de
  • since 1st October 2018 University Professor for Planetary Sciences at the Department of Earth Sciences at FU Berlin
  • head of Planetary Sciences and Remote Sensing at FU Berlin
  • project leader of HRSC on Mars Express, ISS on Cassini and the Framing Camera on Dawn
  • 2017 ERC Consolidator Grant for project "Habitat-OASIS - Habitability of Oceans and Aqueous Systems on Icy Satellites"
  • 2015 Co-Investigator of the Surface Dust Analyzer (SUDA) experiment on NASA's Europa Clipper mission
  • 2014 Heisenberg fellowship of the Deutsche Forschungsgemeinschaft (DFG)
  • 2012 habilitation at Universität Heidelberg, Institute of Earth Sciences
  • 2010 Co-Investigator of the Cosmic Dust Analyzer (CDA) experiment on the ESA/NASA mission Cassini-Huygens
  • Entstehung des Sonnensystems und planetare Prozesse (Lecture: 24238a)
  • Entstehung des Sonnensystems und planetare Prozesse (Practice Seminar: 24238b)
  • Seminar Arbeitsgruppe Planetologie (Seminar: 24200b17)

Habitat-OASIS – Habitability of Oceans and Aqueous Systems on Icy Satellites

Habitat-OASIS addresses the question of habitability of the outer solar system by looking at spacecraft data and preparing for future space missions using novel approaches. The classical view held that for a planet or moon to be habitable requires liquid water at or near its surface. This view has been challenged by the discovery of numerous subsurface oceans below the icy crusts of moons orbiting Jupiter and Saturn. In particular, the cryo-volcanic moons Enceladus and Europa, orbiting Saturn and Jupiter respectively, are considered to have the largest astrobiological potential. On these two moons, the ocean floor is in contact with a rocky core and there are indications for hydrothermal activity - hot water flowing out from the rocky sea floor into the ocean. On Earth, these kinds of hydrothermal vents are places where life developed independently of sunlight.

The project Habitat-OASIS includes the following aspects:

1 Exploring Enceladus’ Subsurface Organic Material

The compositional analysis of organic material emerging from the subsurface ocean of Enceladus is vital for constraining the astrobiological potential of Saturn’s small icy moon. Cryovolcanically active, Enceladus ejects a plume of water vapour and ice particles from fractures in the icy crust of its south polar terrain. Grains emitted fast enough can leave the region dominated by the moon’s gravity, and enter Saturn’s diffuse E ring, itself formed largely by these plume particles. The mass spectrometer of the Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft analysed ice grains in both the plume and the E ring between 2004 and 2017. Over 200,000 mass spectra were recorded during this period. Our investigation of the wealth of spectra returned by Cassini’s CDA is ongoing, with analysis of flight data supported by further laboratory analogue experiments. Characterizing signatures from organic material to enhance further our knowledge about the organic inventory and also to further explore the astrobiological potential of the moon.

2 Inorganics in Ocean Worlds – a Rocky Interaction with Water

When water interacts with rocks and minerals, it can leach inorganic compounds into solution. However, unlike on the Earth, where rain water running off the land is primarily responsible for the salinity of the sea, on ocean worlds such as Enceladus and Europa this is not the case. Instead, interaction between a subsurface ocean and the rocky core it surrounds, produces a salt-rich, briny, ocean within the bodies. To predict the appearance of such inorganic signatures, and understand the concentrations within the grains at which they can be detected, a comprehensive programme of analogue laboratory experiments is underway within the group. The data from these analogue experiments will be used to predict, and subsequently interpret, the likely results from future missions to ocean worlds, such as those from the Surface Dust Mass Analyzer (SUDA) instrument onboard the upcoming Europa Clipper mission to Jupiter’s moon Europa.

3 Laboratory Facility to Simulate Impacts of Hypervelocity Ice Grains from Ocean Worlds in Space

Simulating hypervelocity dust/ice grain impacts onto space detectors is crucial for our ongoing and future research projects. During an impact, a fraction of the dust/ice particle is converted into elemental and molecular ions (a process known as impact ionization) that can then be analyzed by mass spectrometry. This is the principle method we use in Habitat-OASIS to explore the subsurface oceans of Enceladus with the Cosmic Dust Analyzer (CDA) aboard Cassini and the Surface Dust Analyzer (SUDA) on Europa Clipper. Laboratory analogue experiments are an essential element of the interpretation of impact ionization mass spectra recorded in space.

4 Spectral Reference Library for Future Space Missions

With the first laboratory spectra recorded in 2012, the facility has been running for over 7 years, generating approximately 10.000 mass spectra. The huge range of mass spectra encompasses different analogue materials for icy grains as well as variations in instrument parameters that can be adjusted individually for each measurement. To facilitate the easy searching, access and extraction of spectra from this large and growing library, an internally accessible database (spectral reference library) containing all recorded spectra has been created.

  

In addition to Habitat-OASIS, Prof. Postberg is involved in the following projects:

Composition of Saturn’s Rings and Mineral Dust at Saturn

The dynamical and compositional characterization of Saturn's ring system is a prime goal of our dust detector, Cosmic Dust Analyzer (CDA), on-board the Cassini spacecraft. In the years 2016 and 2017, during the Grand Finale, Cassini has frequently dived through the small gap between the inner edge of the ring system and Saturn's upper atmosphere, allowing for compositional in situ measurements of debris particles emitted from the main rings. In collaboration with ESA we started a project to explore exogenic mineral dust that CDA detects and that does not stem from Saturn’s ring system. The goal is to perform the complete mapping of the composition of these non-icy micro-meteoroids within the Saturnian system, and to relate the compositional information to the grains dynamics, such as to constrain the properties of their parent bodies.

Composition of Interplanetary and Interstellar Dust in our Solar System

Interstellar dust particles can be analyzed in situ from a spacecraft or can be captured and brought back to Earth by a sample-return mission. Prof. Frank Postberg is Co-Investigator of the Destiny+ Dust Analyzer (DDA) experiment on-board the Destiny+ mission that is prepared for launch in 2024. Destiny+ was designed by JAXA to acquire the compact deep space explorer technology, fly-by observation of a meteor shower parent body, and in situ analysis of interplanetary dust. It will conduct flyby exploration of the asteroid 3200 Phaethon, which is well known as a parent body of a meteor shower.

» Selection (more publications and conference contributions on Google Scholar)

2019

Buratti, B. J., P. C. Thomas, E. Roussos, C. Howett, M. Seiß, A. R. Hendrix, P. Helfenstein, R. H. Brown, R. N. Clark, T. Denk, G. Filacchione, H. Hoffmann, G. H. Jones, N. Khawaja, P. Kollmann, N. Krupp, J. Lunine, T. W. Momary, C. Paranicas, F. Postberg, M. Sachse, F. Spahn, J. Spencer, R. Srama, T. Albin, K. H. Baines, M. Ciarniello, T. Economou, H.-W. Hsu, S. Kempf, S. M. Krimigis, D. Mitchell, G. Moragas-Klostermeyer, P. D. Nicholson, C. C. Porco, H. Rosenberg, J. Simolka, and L. A. Soderblom (2019), Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus, Science, 364(6445), doi:10.1126/science.aat2349.

Khawaja, N., F. Postberg, J. Hillier, F. Klenner, S. Kempf, L. Nölle, R. Reviol, Z. Zou, and R. Srama (2019), Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains, MNRAS, 489(4), 5231–5243, doi:10.1093/mnras/stz2280.

Klenner, F., F. Postberg, J. Hillier, N. Khawaja, R. Reviol, R. Srama, B. Abel, F. Stolz, and S. Kempf (2019), Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space, Rapid Communications in Mass Spectrometry, 33(22), 1751–1760, doi:10.1002/rcm.8518.

Klenner, F., F. Postberg, J. Hillier, N. Khawaja, R. Reviol, F. Stolz, M. L. Cable, B. Abel, and L. Nölle (2020), Analog Experiments for the Identification of Trace Biosignatures in Ice Grains from Extraterrestrial Ocean Worlds, Astrobiology, 20(3), in press.

Postberg, F. (invited), N. Khawaja, L. Nölle, F. Klenner, J. Hillier, H.-W. Hsu, R. Srama, G. Tobie, A. Bouquet, J. H. Waite, and C. R. Glein (2019), Origins of Organic Matter in Enceladus' Plume, in Astrobiology Science Conference, 203–4.

Sterken, V. J., A. J. Westphal, N. Altobelli, D. Malaspina, and F. Postberg (2019), Interstellar Dust in the Solar System, Space Sci Rev, 215(7), 1797, doi:10.1007/s11214-019-0607-9.

  

2018

Glein, C. R., F. Postberg, and S. D. Vance (2018), The Geochemistry of Enceladus: Composition and Controls, in Enceladus and the Icy Moons of Saturn, edited by P. M. Schenk et al., pp. 39–56, University of Arizona Press.

Hedman, M. M., F. Postberg, D. P. Hamilton, S. Renner, and H.-W. Hsu (2018), Dusty Rings, in Planetary Ring Systems, edited by M. S. Tiscareno and C. D. Murray, pp. 308–337, Cambridge University Press.

Hillier, J. K., J. Schmidt, H.-W. Hsu, and F. Postberg (2018), Dust Emission by Active Moons, Space Sci Rev, 214(8), 189, doi:10.1007/s11214-018-0539-9.

Hillier, J. K., Z. Sternovsky, S. Kempf, M. Trieloff, M. Guglielmino, F. Postberg, and M. C. Price (2018), Impact ionisation mass spectrometry of platinum-coated olivine and magnesite-dominated cosmic dust analogues, Planetary and Space Science, 156, 96–110.

Hsu, H.-W., J. Schmidt, S. Kempf, F. Postberg, G. Moragas-Klostermeyer, M. Seiß, H. Hoffmann, M. Burton, S. Ye, W. S. Kurth, and others (2018), In situ collection of dust grains falling from Saturn’s rings into its atmosphere, Science, 362(6410), 3185, doi:10.1126/science.aat3185.

Mitri, G., F. Postberg, J. M. Soderblom, P. Wurz, P. Tortora, B. Abel, J. W. Barnes, M. Berga, N. Carrasco, A. Coustenis, and others (2018), Explorer of Enceladus and Titan (E2T): Investigating ocean worlds’ evolution and habitability in the solar system, Planetary and Space Science, 155, 73–90.

Postberg, F., N. Khawaja, B. Abel, G. Choblet, C. R. Glein, M. S. Gudipati, B. L. Henderson, H.-W. Hsu, S. Kempf, F. Klenner, and others (2018), Macromolecular organic compounds from the depths of Enceladus, Nature, 558(7711), 564-568, doi:10.1038/s41586-018-0246-4.

Postberg, F., R. N. Clark, C. J. Hansen, A. J. Coates, C. M. Dalle Ore, F. Scipioni, M. M. Hedman, and J. H. Waite (2018), Plume and Surface Composition of Enceladus, in Enceladus and the Icy Moons of Saturn, edited by P. M. Schenk et al., 129/162, University of Arizona Press.

   

2017

Choblet, G., G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, and O. Souček (2017), Powering prolonged hydrothermal activity inside Enceladus, Nature Astronomy, 1(12), 841.

   

2016

Postberg, F., G. Tobie, and T. Dambeck (2016), Under the Sea of Enceladus, Scientific American, 315(4), 38–45.

Altobelli, N., F. Postberg, K. Fiege, M. Trieloff, H. Kimura, V. J. Sterken, H.-W. Hsu, J. Hillier, N. Khawaja, G. Moragas-Klostermeyer, and others (2016), Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer, Science, 352(6283), 312–318.

Hsu, H.-W., S. Kempf, S. V. Badman, W. S. Kurth, F. Postberg, and R. Srama (2016), Interplanetary magnetic field structure at Saturn inferred from nanodust measurements during the 2013 aurora campaign, Icarus, 263, 10–16.

  

2015

Hsu, H.-W., F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, and others (2015), Ongoing hydrothermal activities within Enceladus, Nature, 519(7542), 207.

Sekine, Y., T. Shibuya, F. Postberg, H.-W. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P. K. Hong, M. Yoshizaki, and others (2015), High-temperature water‐rock interactions and hydrothermal environments in the chondrite-like core of Enceladus, Nature communications, 6, 8604.

Wiederschein, F., E. Vöhringer-Martinez, A. Beinsen, F. Postberg, J. Schmidt, R. Srama, F. Stolz, H. Grubmüller, and B. Abel (2015), Charge separation and isolation in strong water droplet impacts, Physical Chemistry Chemical Physics, 17(10), 6858–6864.

   

2014

Postberg, F., J. K. Hillier, S. P. Armes, S. Bugiel, A. Butterworth, D. Dupin, La Fielding, S. Fujii, Z. Gainsforth, E. Grün, and others (2014), Stardust Interstellar Preliminary Examination IX: High-speed interstellar dust analog capture in Stardust flight-spare aerogel, Meteoritics & Planetary Science, 49(9), 1666–1679.

Arridge, C. S., N. Achilleos, J. Agarwal, C. B. Agnor, R. Ambrosi, N. André, S. V. Badman, K. Baines, D. Banfield, M. Barthélémy, and others (2014), The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets, Planetary and Space Science, 104, 122–140.

Bechtel, H. A., G. J. Flynn, C. Allen, D. Anderson, A. Ansari, S. Bajt, R. K. Bastien, N. Bassim, J. Borg, F. E. Brenker, and others (2014), Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates, Meteoritics & Planetary Science, 49(9), 1548–1561.

Brenker, F. E., A. J. Westphal, L. Vincze, M. Burghammer, S. Schmitz, T. Schoonjans, G. Silversmit, B. Vekemans, C. Allen, D. Anderson, and others (2014), Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID 13, Meteoritics & Planetary Science, 49(9), 1594–1611.

Butterworth, A. L., A. J. Westphal, T. Tyliszczak, Z. Gainsforth, J. Stodolna, D. R. Frank, C. Allen, D. Anderson, A. Ansari, S. Bajt, and others (2014), Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector, Meteoritics & Planetary Science, 49(9), 1562–1593.

Fiege, K., M. Trieloff, J. K. Hillier, M. Guglielmino, F. Postberg, R. Srama, S. Kempf, and J. Blum (2014), Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles, Icarus, 241, 336–345.

Flynn, G. J., S. R. Sutton, B. Lai, S. Wirick, C. Allen, D. Anderson, A. Ansari, S. Bajt, R. K. Bastien, N. Bassim, and others (2014), Stardust Interstellar Preliminary Examination VII: Synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe, Meteoritics & Planetary Science, 49(9), 1626–1644.

Frank, D. R., A. J. Westphal, M. E. Zolensky, Z. Gainsforth, A. L. Butterworth, R. K. Bastien, C. Allen, D. Anderson, A. Ansari, S. Bajt, and others (2014), Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks, Meteoritics & Planetary Science, 49(9), 1522–1547.

Gainsforth, Z., F. E. Brenker, A. S. Simionovici, S. Schmitz, M. Burghammer, A. L. Butterworth, P. Cloetens, L. Lemelle, J.-A. S. Tresserras, T. Schoonjans, and others (2014), Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates, Meteoritics & Planetary Science, 49(9), 1645–1665.

Hillier, J. K., Z. Sternovsky, S. P. Armes, L. A. Fielding, F. Postberg, S. Bugiel, K. Drake, R. Srama, A. T. Kearsley, and M. Trieloff (2014), Impact ionisation mass spectrometry of polypyrrole-coated pyrrhotite microparticles, Planetary and Space Science, 97, 9–22.

Li, Y. W., S. Bugiel, M. Trieloff, J. K. Hillier, F. Postberg, M. C. Price, A. Shu, K. Fiege, La Fielding, S. P. Armes, and others (2014), Morphology of craters generated by hypervelocity impacts of micron-sized polypyrrole-coated olivine particles, Meteoritics & Planetary Science, 49(8), 1375–1387.

Simionovici, A. S., L. Lemelle, P. Cloetens, V. A. Solé, J.-A. S. Tresseras, A. L. Butterworth, A. J. Westphal, Z. Gainsforth, J. Stodolna, C. Allen, and others (2014), Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel, Meteoritics & Planetary Science, 49(9), 1612–1625.

Sterken, V. J., A. J. Westphal, N. Altobelli, E. Grün, J. K. Hillier, F. Postberg, R. Srama, C. Allen, D. Anderson, A. Ansari, and others (2014), Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector, Meteoritics & Planetary Science, 48.

Stroud, R. M., C. Allen, A. Ansari, D. Anderson, S. Bajt, N. Bassim, R. S. Bastien, H. A. Bechtel, J. Borg, F. E. Brenker, and others (2014), Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector, Meteoritics & Planetary Science, 49(9), 1698–1719.

Tobie, G., N. A. Teanby, A. Coustenis, R. Jaumann, F. Raulin, J. Schmidt, N. Carrasco, A. J. Coates, D. Cordier, R. de Kok, W. D. Geppert, J. P. Lebreton, A. Lefevre, T. A. Livengood, K. E. Mandt, G. Mitri, F. Nimmo, C. A. Nixon, L. Norman, R. T. Pappalardo, F. Postberg, S. Rodriguez, D. Schulze-Makuch, J. M. Soderblom, A. Solomonidou, K. Stephan, E. R. Stofan, E. P. Turtle, R. J. Wagner, R. A. West, and J. H. Westlake (2014), Science goals and mission concept for the future exploration of Titan and Enceladus, Planetary and Space Science, 104, 59–77.

Westphal, A. J., D. Anderson, A. L. Butterworth, Frank, B. Hudson, R. Lettieri, W. Marchant, J. V. Korff, D. Zevin, A. Ardizzone, and others (2014), Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel, Meteoritics & Planetary Science, 10.

Westphal, A. J., R. M. Stroud, H. A. Bechtel, F. E. Brenker, A. L. Butterworth, G. J. Flynn, Frank, Z. Gainsforth, J. K. Hillier, F. Postberg, and others (2014), Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft, Science, 345, 786–791.

Westphal, A. J., H. A. Bechtel, F. E. Brenker, A. L. Butterworth, G. Flynn, D. R. Frank, Z. Gainsforth, J. K. Hillier, F. Postberg, A. S. Simionovici, and others (2014), Final reports of the stardust interstellar preliminary examination, Meteoritics & Planetary Science, 49(9), 1720–1733.

Westphal, A. J., R. M. Stroud, H. A. Bechtel, F. E. Brenker, A. L. Butterworth, G. J. Flynn, D. R. Frank, Z. Gainsforth, J. K. Hillier, F. Postberg, and others (2014), Coordinated Microanalyses of Seven Particles of Probable Interstellar Origin from the Stardust Mission, Microscopy and Microanalysis, 20(S3), 1692–1693.

   

2013

Hsu, H.-W., K. C. Hansen, M. Horányi, S. Kempf, A. Mocker, G. Moragas-Klostermeyer, F. Postberg, R. Srama, and B. Zieger (2013), Probing IMF using nanodust measurements from inside Saturn’s magnetosphere, Geophysical Research Letters, 40(12), 2902–2906.

Simionovici, A. S., L. Lemelle, P. Cloetens, V. A. Solé, J.-A. Sans Tresseras, A. L. Butterworth, A. J. Westphal, Z. Gainsforth, J. Stodolna, C. Allen, and others (2013), Quantification of Element Abundances of Stardust Interstellar Candidates by Synchrotron Radiation X-Ray Fluorescence Spectroscopy, Meteoritics and Planetary Science Supplement, 76.

  

2012

Christophe, B., L. J. Spilker, J. D. Anderson, N. André, S. W. Asmar, J. Aurnou, D. Banfield, A. Barucci, O. Bertolami, R. Bingham, and others (2012), OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt, Experimental Astronomy, 34(2), 203–242.

Grün, E., Z. Sternovsky, M. Horanyi, V. Hoxie, S. Robertson, J. Xi, S. Auer, M. Landgraf, F. Postberg, M. C. Price, and others (2012), Active cosmic dust collector, Planetary and Space Science, 60(1), 261–273.

Hillier, J. K., F. Postberg, S. Sestak, R. Srama, S. Kempf, M. Trieloff, Z. Sternovsky, and S. F. Green (2012), Impact ionization mass spectra of anorthite cosmic dust analogue particles, Journal of Geophysical Research: Planets, 117(E9).

Hsu, H.-W., H. Krüger, and F. Postberg (2012), Dynamics, composition, and origin of Jovian and Saturnian dust-stream particles, in Nanodust in the Solar System: Discoveries and Interpretations, pp. 77–117, Springer, Berlin, Heidelberg.

Kempf, S., R. Srama, E. Grün, A. Mocker, F. Postberg, J. K. Hillier, M. Horányi, Z. Sternovsky, B. Abel, A. Beinsen, and others (2012), Linear high resolution dust mass spectrometer for a mission to the Galilean satellites, Planetary and Space Science, 65(1), 10–20.

Srama, R., H. Krüger, T. Yamaguchi, T. Stephan, M. Burchell, A. T. Kearsley, V. Sterken, F. Postberg, S. Kempf, E. Grün, and others (2012), SARIM PLUS—sample return of comet 67P/CG and of interstellar matter, Experimental Astronomy, 33(2-3), 723–751.

Sterken, V. J., N. Altobelli, S. Kempf, H. Krüger, F. Postberg, R. H. Soja, R. Srama, and E. Grün (2012), An optimum opportunity for interstellar dust measurements by the JUICE mission, Planetary and Space Science, 71(1), 142–146.

Trieloff, M., F. Postberg, J. K. Hillier, S. Armes, S. Bugiel, A. Butterworth, D. Dupin, La Fielding, S. Fujii, Z. Gainsforth, and others (2012), Capture of High-Speed Interstellar Dust Analogues in Stardust Flight Spare Aerogel, Meteoritics and Planetary Science Supplement, 75.

  

2011

Postberg, F., C. Allen, S. Bajt, H. A. Bechtel, J. Borg, F. E. Brenker, J. Bridges, D. E. Brownlee, M. Burchell, M. Burghammer, and others (2011), High Fidelity Studies of Interstellar Dust analogue Impacts in Stardust Aerogel and Foil, Meteoritics and Planetary Science Supplement, 74.

Postberg, F., E. Grün, M. Horanyi, S. Kempf, H. Krüger, J. Schmidt, F. Spahn, R. Srama, Z. Sternovsky, and M. Trieloff (2011), Compositional mapping of planetary moons by mass spectrometry of dust ejecta, Planetary and Space Science, 59(14), 1815–1825.

Postberg, F., J. Schmidt, J. Hillier, S. Kempf, and R. Srama (2011), A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474(7353), 620.

Floss, C., C. Allen, A. Ansari, S. Bajt, N. Bassim, H. A. Bechtel, J. Borg, F. Brenker, J. Bridges, D. E. Brownlee, and others (2011), Auger Analysis of Impact Craters from the Stardust Interstellar Foils, Meteoritics and Planetary Science Supplement, 74.

Hsu, H.-W., S. Kempf, F. Postberg, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, and R. Srama (2011), Cassini dust stream particle measurements during the first three orbits at Saturn, Journal of Geophysical Research: Space Physics, 116(A8).

Hsu, H.-W., F. Postberg, S. Kempf, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, and R. Srama (2011), Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn, Journal of Geophysical Research: Space Physics, 116(A9).

Matson, D., J. Schmidt, and F. Postberg (2011), Marking the Fifth Anniversary of the Discovery of Enceladus's Plumes, Eos, Transactions American Geophysical Union, 92(12), 101, doi:10.1029/2011EO120005.

Mocker, A., S. Bugiel, S. Auer, G. Baust, A. Colette, K. Drake, K. Fiege, E. Grün, F. Heckmann, S. Helfert, and others (2011), A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research, Review of Scientific Instruments, 82(9), 95111.

Simionovici, A. S., C. Allen, S. Bajt, R. Bastien, H. Bechtel, J. Borg, F. E. Brenker, J. C. Bridges, D. E. Brownlee, M. J. Burchell, and others (2011), Synchrotron X-Ray Irradiation of Stardust Interstellar Candidates: From“No”to“Low”Damage Effects, Meteoritics and Planetary Science Supplement, 74.

Srama, R., S. Kempf, G. Moragas-Klostermeyer, N. Altobelli, S. Auer, U. Beckmann, S. Bugiel, M. Burton, T. Economomou, H. Fechtig, and others (2011), The cosmic dust analyser onboard cassini: Ten years of discoveries, CEAS Space Journal, 2(1-4), 3–16.

Sterken, V. J., N. Altobelli, S. Kempf, F. Postberg, G. Schwehm, R. Srama, and E. Gruen (2011), Modeling Interstellar Dust Dynamics in the Solar System: Application to Stardust, Meteoritics and Planetary Science Supplement, 74.

Stroud, R. M., C. Allen, A. Ansari, S. Bajt, N. Bassim, H. A. Bechtel, J. Borg, F. Brenker, J. Bridges, D. E. Brownlee, and others (2011), Elemental Analysis of Impact Residues in Craters on the Stardust Interstellar Foils, Meteoritics and Planetary Science Supplement, 74.

Wiederschein, F., E. Vöhringer-Martinez, A. Beinsen, R. Srama, S. Kempf, F. Postberg, B. Abel, and H. Grubmüller (2011), Charge Separation and Isolation in Water and Ice Particles on Strong Impacts, Biophysical Journal, 100(3), 613a.

   

2010

Postberg, F., M. Trieloff, R. Srama, J. K. Hillier, Z. Gainsforth, A. J. Westphal, S. Bugiel, E. Grün, S. Armes, A. Kearsley, and others (2010), Lab Simulation of Interstellar Dust: A New Approach for Hypervelocity Impact, Meteoritics and Planetary Science Supplement, 73.

Tobie, G., B. Giese, T. A. Hurford, R. M. Lopes, F. Nimmo, F. Postberg, K. D. Retherford, J. Schmidt, J. R. Spencer, T. Tokano, and others (2010), Surface, subsurface and atmosphere exchanges on the satellites of the outer solar system, Space science reviews, 153(1-4), 375–410.

   

2009

Postberg, F., S. Kempf, D. Rost, T. Stephan, R. Srama, M. Trieloff, A. Mocker, and M. Goerlich (2009), Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA, Planetary and Space Science, 57(12), 1359–1374.

Postberg, F., M. Trieloff, R. Srama, J. K. Hillier, Z. Gainsforth, A. J. Westphal, S. Bugiel, E. Grün, S. Armes, A. Kearsley, and others (2009), High Velocity Van de Graaff Shots of Mineral Dust: Application to In Situ Space Missions, Meteoritics and Planetary Science Supplement, 72, 5230.

Postberg, F., S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, and R. Srama (2009), Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459(7250), 1098.

Hillier, J. K., S. Sestak, S. F. Green, F. Postberg, R. Srama, and M. Trieloff (2009), The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments, Planetary and Space Science, 57(14-15), 2081–2086.

Srama, R., W. Woiwode, F. Postberg, S. P. Armes, S. Fujii, D. Dupin, J. Ormond-Prout, Z. Sternovsky, S. Kempf, G. Moragas-Klostermeyer, and others (2009), Mass spectrometry of hyper-velocity impacts of organic micrograins, Rapid Communications in Mass Spectrometry, 23(24), 3895–3906.

   

2008

Postberg, F., S. Kempf, J. K. Hillier, R. Srama, S. F. Green, N. McBride, and E. Grün (2008), The E-ring in the vicinity of Enceladus: II. Probing the moon’s interior—The composition of E-ring particles, Icarus, 193(2), 438–454.

Postberg, F., S. Kempf, R. Srama, E. Gruen, J. K. Hillier, S. F. Green, and N. McBride (2008), Composition of Saturnian E-ring Particles. Probing subsurface Oceans of Enceladus?, International Journal of Astrobiology, 7(1), 68.

Jones, G. H., E. Roussos, N. Krupp, U. Beckmann, A. J. Coates, F. Crary, I. Dandouras, V. Dikarev, M. K. Dougherty, P. Garnier, and others (2008), The dust halo of Saturn’s largest icy moon, Rhea, Science, 319(5868), 1380–1384.

Kempf, S., U. Beckmann, G. Moragas-Klostermeyer, F. Postberg, R. Srama, T. Economou, J. Schmidt, F. Spahn, and E. Grün (2008), The E ring in the vicinity of Enceladus: I. Spatial distribution and properties of the ring particles, Icarus, 193(2), 420–437.

   

2007

Postberg, F., S. Kempf, R. Srama, S. F. Green, J. K. Hillier, N. McBride, and E. Grün (2006), Composition of jovian dust stream particles, Icarus, 183(1), 122–134.

Fujii, S., S. P. Armes, R. Jeans, R. Devonshire, S. Warren, S. L. McArthur, M. J. Burchell, F. Postberg, and R. Srama (2006), Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles: New synthetic mimics for sulfur-based micrometeorites, Chemistry of materials, 18(11), 2758–2765.

Srama, R., S. Kempf, G. Moragas-Klostermeyer, S. Helfert, T. J. Ahrens, N. Altobelli, S. Auer, U. Beckmann, J. G. Bradley, M. Burton, and others (2006), In situ dust measurements in the inner Saturnian system, Planetary and Space Science, 54(9-10), 967–987.

   

2006

Postberg, F., S. Kempf, R. Srama, S. F. Green, J. K. Hillier, N. McBride, and E. Grün (2006), Composition of jovian dust stream particles, Icarus, 183(1), 122–134.

Fujii, S., S. P. Armes, R. Jeans, R. Devonshire, S. Warren, S. L. McArthur, M. J. Burchell, F. Postberg, and R. Srama (2006), Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles: New synthetic mimics for sulfur-based micrometeorites, Chemistry of materials, 18(11), 2758–2765.

Srama, R., S. Kempf, G. Moragas-Klostermeyer, S. Helfert, T. J. Ahrens, N. Altobelli, S. Auer, U. Beckmann, J. G. Bradley, M. Burton, and others (2006), In situ dust measurements in the inner Saturnian system, Planetary and Space Science, 54(9-10), 967–987.

   

2005

Kempf, S., R. Srama, F. Postberg, M. Burton, S. F. Green, S. Helfert, J. K. Hillier, N. McBride, J. A. M. McDonnell, G. Moragas-Klostermeyer, and others (2005), Composition of Saturnian stream particles, Science, 307(5713), 1274–1276.