Mass Spectrometric Fingerprints of Organic Compounds in Sulfate-Rich Ice Grains: Implications for Europa Clipper

Maryse Napoleoni^{1*}, Fabian Klenner¹, Lucía Hortal Sánchez¹, Nozair Khawaja¹, Jon K. Hillier¹, Murthy S. Gudipati², Kevin P. Hand², Sascha Kempf³, Frank Postberg¹

¹Institute of Geological Sciences, Freie Universität Berlin, Berlin 12249, Germany ²Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ³LASP, University of Colorado, Boulder, CO, USA

*corresponding author: m.napoleoni@fu-berlin.de

Supplementary Information

Figure S1. Baseline corrected cation mass spectrum of magnesium sulfate (MgSO₄) at a concentration of 0.1M, generated with a delay time of 5.0 μ s.

Figure S2. Baseline corrected cation mass spectrum of magnesium sulfate (MgSO₄) at a concentration of 1M, generated with a delay time of 6.0 μ s.

Figure S3. Baseline corrected anion mass spectrum of magnesium sulfate (MgSO₄) at a concentration of 0.1M, generated with a delay time of 6.0 μ s.

Figure S4. Baseline corrected cation mass spectrum of 5-amino-1-pentanol (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.4 μ s.

Figure S5. Baseline corrected cation mass spectrum of 5-amino-1-pentanol (concentration 0.1 wt%) in 1M magnesium sulfate (MgSO₄), generated with a delay time of 7.2 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S6. Baseline corrected cation mass spectrum of pyridine (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.0 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S7. Baseline corrected cation mass spectrum of butylamine (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.5 μ s.

Figure S8. Baseline corrected cation mass spectrum of acetic acid (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.0 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S9. Baseline corrected cation mass spectrum of acetic acid (concentration 5 wt%) in 0.1M magnesium sulfate (MgSO₄), generated with a delay time of 5.0 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S10. Baseline corrected cation mass spectrum of benzoic acid (concentration 0.17 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.8 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S11. Baseline corrected cation mass spectrum of methanol (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.5 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S12. Baseline corrected cation mass spectrum of glucose (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.0 μ s.

Figure S13. Baseline corrected anion mass spectrum of acetic acid (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.0 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S14. Baseline corrected anion mass spectrum of benzoic acid (concentration 0.17 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.8 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S15. Baseline corrected anion mass spectrum of glucose (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.0 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S16. Baseline corrected anion mass spectrum of methanol (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.3 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S17. Baseline corrected anion mass spectrum of pyridine (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.8 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S18. Baseline corrected anion mass spectrum of 5-amino-1-pentanol (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 6.1 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S19. Baseline corrected anion mass spectrum of methanol (concentration 5 wt%) in 1M magnesium sulfate (MgSO₄), generated with a delay time of 9.3 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S20. Baseline corrected anion mass spectrum of butylamine (concentration 5 wt%) in 0.01M magnesium sulfate (MgSO₄), generated with a delay time of 5.5 μ s. Unlabeled peaks originate exclusively from the MgSO₄ matrix.

Figure S21. Baseline corrected cation mass spectrum of sulfuric acid (H_2SO_4) at a concentration of 0.01M, generated with a delay time of 6.0 μ s.

Figure S22. Baseline corrected anion mass spectrum of sulfuric acid (H_2SO_4) at a concentration of 0.01M, generated with a delay time of 6.2 μ s.

Figure S23. Baseline corrected cation mass spectrum of 5-amino-1-pentanol (concentration 5wt%) in 0.01M sulfuric acid (H_2SO_4), generated with a delay time of 6.8 μ s.

Figure S24. Baseline corrected cation mass spectrum of 5-amino-1-pentanol (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.8 μ s.

Figure S25. Baseline corrected cation mass spectrum of pyridine (concentration 5wt%) in 0.01M sulfuric acid (H₂SO₄), generated with a delay time of 6.2µs.

Figure S26. Baseline corrected cation mass spectrum of acetic acid (concentration 5wt%) in 1M sulfuric acid (H_2SO_4), generated with a delay time of 6.4 μ s.

Figure S27. Baseline corrected cation mass spectrum of benzoic acid (concentration 0.17wt%) in 1M sulfuric acid (H_2SO_4), generated with a delay time of 6.0 µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S28. Baseline corrected cation mass spectrum of glucose (concentration 5wt%) in 0.01M sulfuric acid (H_2SO_4), generated with a delay time of 6.0µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S29. Baseline corrected cation mass spectrum of methanol (concentration 5wt%) in 0.01M sulfuric acid (H_2SO_4), generated with a delay time of 6.7 μ s. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S30. Baseline corrected cation mass spectrum of butylamine (concentration 1.3wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.4 μ s.

Figure S31. Baseline corrected anion mass spectrum of 5-amino-1-pentanol (concentration 5wt%) in 0.01M sulfuric acid (H_2SO_4), generated with a delay time of 6.2µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S32. Baseline corrected anion mass spectrum of acetic acid (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.4 μ s. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S33. Baseline corrected anion mass spectrum of benzoic acid (concentration 0.17wt%) in 1M sulfuric acid (H_2SO_4), generated with a delay time of 5.7 μ s. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S34. Baseline corrected anion mass spectrum of 5-amino-1-pentanol (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.8µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S35. Baseline corrected anion mass spectrum of glucose (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.9µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S36. Baseline corrected anion mass spectrum of methanol (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.8 µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

Figure S37. Baseline corrected anion mass spectrum of butylamine (concentration 5wt%) in 0.1M sulfuric acid (H_2SO_4), generated with a delay time of 6.4 µs. Unlabeled peaks originate exclusively from the H_2SO_4 matrix.

				MgSO ₄			H ₂ SO ₄	
	m/z	pure H ₂ O	0.01M	0.1M	1 M	0.01M	0.1M	1M
	18	$[NH_4]^+$	$[NH_4]^+$	$[NH_4]^+$		$[NH_4]^+$	$[NH_4]^+$	$[\mathrm{NH}_4]^+$
	25, 29							UI
	30	$[CH_2NH_2]^+$ or $[CH_2O]^+$	[CH ₂ NH ₂] ⁺ or [CH ₂ O] ⁺	[CH ₂ NH ₂] ⁺ or [CH ₂ O] ⁺		[CH ₂ NH ₂] ⁺ or [CH ₂ O] ⁺	$\left[\mathrm{CH}_{2}\mathrm{NH}_{2} ight] ^{+}$ or $\left[\mathrm{CH}_{2}\mathrm{O} ight] ^{+}$	[CH ₂ NH ₂] ⁺ or [CH ₂ O] ⁺
	31							$[CH_3O]^+$
	36	$[NH_4 (H_2O)]^+$		$[\mathrm{NH}_4(\mathrm{H}_2\mathrm{O})]^+$				$[\mathrm{NH}_4(\mathrm{H}_2\mathrm{O})]^+$
	41		$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$		$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$
	42							UI
	43		UI	UI				UI
	44							UI
	45							$[C_2H_5O]^+$
	48	$\left[CH_2NH_2\left(H_2O\right)\right]^+$		$\left[\mathrm{CH}_{2}\mathrm{NH}_{2}\left(\mathrm{H}_{2}\mathrm{O}\right)\right]^{+}$				
	54	$[NH_4 (H_2O)_2]^+$						$[NH_4 (H_2O)_2]^+$
	56			UI				
	57	$[M-CH_2O-NH_2]^+$	$[M-CH_2O-NH_2]^+$	$[M-CH_2O-NH_2]^+$			$[M-CH_2O-NH_2]^+$	$[M-CH_2O-NH_2]^+$
5 amina 1 nontanal	58			UI				UI
5-annio-1-pentanoi	62			UI				
	66	UI						
	67		UI				UI	
	69	$[M-OH-NH_3]^+$	[M-OH-NH ₃] ⁺	$[M-OH-NH_3]^+$	$[M-OH-NH_3]^+$	$[M-OH-NH_3]^+$	$[M-OH-NH_3]^+$	$[M-OH-NH_3]^+$
	70	UI	UI	UI			UI	UI
	72, 80	UI						
	84	UI	UI	UI			UI	UI
	85	[M-NH ₄] ⁺	$[M-NH_4]^+$	$[M-NH_4]^+$		$[M-NH_4]^+$	$[M-NH_4]^+$	$[M-NH_4]^+$
	86	[M-OH] ⁺	[M-OH] ⁺	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$
	87	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$		$[M-NH_2]^+$	$[M-NH_2]^+$
	88	UI						UI
	89		UI			UI	UI	
	90	UI						UI
	98							UI
	102	UI	UI	UI				UI
	103	UI	UI					UI
Acetic acid	15		$[CH_3]^+$	$[CH_3]^+$				
Actic aciu	24		UI	UI				

	29		$[CHO]^+$	$[CHO]^+$			
	30, 34			UI			
	41		$[C_{3}H_{5}]^{+}$				UI
Acetic acid	42	UI	$[C_{3}H_{6}]^{+}$		UI		UI
Ticciic aciu	43	[M-OH] ⁺	[M-OH] ⁺	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	[M-OH] ⁺
	44	UI	UI	UI	UI	UI	UI
	57	UI			UI	UI	UI
	23	UI					
	29						UI
	30						UI
	41	$[C_{3}H_{5}]^{+}$					
	43	UI					
	48						UI
	59, 61	UI					
	74				UI		
	76						UI
Danasia asid	77	UI			UI	UI	UI
Benzoic acid	79	$[C_6H_7]^+$	$[C_{6}H_{7}]^{+}$		$[C_6H_7]^+$	$[C_6H_7]^+$	$[C_6H_7]^+$
	80	$[C_6H_8]^+$	$[C_6H_8]^+$		$[C_6H_8]^+$	$[C_{6}H_{8}]^{+}$	$[C_6H_8]^+$
	86		UI				
	92					UI	
	93	$[C_7H_9]^+$					
	94				$[C_{6}H_{6}O]^{+}$	$[C_{6}H_{6}O]^{+}$	$[C_{6}H_{6}O]^{+}$
	95	UI			UI		UI
	104	UI					
	105	[M-OH] ⁺	[M-OH] ⁺	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	[M-OH] ⁺
	106	UI			UI	UI	UI
	17		$[NH_3]^+$	$[NH_3]^+$			
	18	$[NH_4]^+$	$[NH_4]^+$	$[NH_4]^+$?	$[NH_4]^+$	$[\mathrm{NH}_4]^+$	$[NH_4]^+$
	25						UI
	27					$[HCN]^+$	$[HCN]^+$
	28		UI	UI			
Butylamine	29	$[CH_3N]^+$	$[CH_3N]^+$			$[CH_3N]^+$	$[CH_3N]^+$
	30		[CH ₂ NH ₂] ⁺ or [CH ₂ O] ⁺	$[CH_2NH_2]^+$ or $[CH_2O]^+$			
	31		[CH ₅ N] ⁺	[CH ₅ N] ⁺			
	32		UI	UI			

	33						UI
	34			UI			
	35		UI	UI			
	36	$[NH_4(H_2O)]^+$	$[NH_4(H_2O)]^+$	$[NH_4(H_2O)]^+$		$[NH_4(H_2O)]^+$	
	39					$[C_3H_3]^+$ or $[HCCN]^+$	[C ₃ H ₃] ⁺ or [HCCN] ⁺
	41	$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$		$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$	$[C_{3}H_{5}]^{+}$
	42		$[C_2H_4N]^+$	$[C_2H_4N]^+$			
	43		UI	UI			UI
	44		$[C_2H_6N]^+$	$[C_2H_6N]^+$			
	45, 46, 47, 48		UI	UI			
	49		UI				
	50, 53		UI	UI			
Butylamine	54	$[NH_4(H_2O)_2]^+$	$[NH_4(H_2O)_2]^+$	$[NH_4(H_2O)_2]^+$			
	56		$[C_3H_6N]^+$	$[C_3H_6N]^+$			
	57	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$	$[M-NH_2]^+$
	58	UI	UI	UI		UI	UI
	59		UI		UI	UI	
	60		UI	UI			UI
	61-65		UI	UI			
	66		UI	UI		UI	
	67-71		UI	UI			
	68					$[C_{3}H_{5}N_{2}]^{+}$ or $[C_{5}H_{9}]^{+}$	
	72	$[NH_4(H_2O)_3]^+$	$[NH_4(H_2O)_3]^+$				
	15					$[CH_3]^+$	
	18				UI		
	27					UI	
	29	$[CHO]^+$	$[CHO]^+$	$[CHO]^+$	$[CHO]^+$	$[CHO]^+$	$[CHO]^+$
	31	[CH ₂ OH] ⁺	[CH ₂ OH] ⁺	[CH ₂ OH] ⁺	$[CH_2OH]^+$	$[CH_2OH]^+$	$[CH_2OH]^+$
	33					UI	
	39					UI	UI
	41				UI	UI	UI
Glucose	43	$[C_2H_3O]^+$	$[C_2H_3O]^+$	$[C_2H_3O]^+$	$[C_2H_3O]^+$	$[C_2H_3O]^+$	$[C_2H_3O]^+$
	45	$[C_2H_5O]^+$	$[C_2H_5O]^+$	$[C_2H_5O]^+$	$[C_2H_5O]^+$	$[C_2H_5O]^+$	$[C_2H_5O]^+$
	53					UI	UI
	55		UI	UI			

	57	$[C_{3}H_{5}O]^{+}$	$[C_{3}H_{5}O]^{+}$	$[C_{3}H_{5}O]^{+}$	$[C_{3}H_{5}O]^{+}$	$[C_{3}H_{5}O]^{+}$	$[C_{3}H_{5}O]^{+}$
	58					UI	UI
	59				UI	UI	UI
	60		UI			UI	
	61	$[C_2H_5O_2]^+$	$[C_2H_5O_2]^+$	$[C_2H_5O_2]^+$	$[C_2H_5O_2]^+$	$[C_2H_5O_2]^+$	$[C_2H_5O_2]^+$
	63					UI	UI
	69	$[C_4H_5O]^+$	$[C_4H_5O]^+$	$[C_4H_5O]^+$	$[C_4H_5O]^+$	$[C_{4}H_{5}O]^{+}$	$[C_4H_5O]^+$
	70	$[C_5H_{10}]^+$	$[C_5H_{10}]^+$			$[C_5H_{10}]^+$	$[C_5H_{10}]^+$
	71		UI	UI	UI	UI	UI
	73	$[C_{3}H_{5}O_{2}]^{+}$	$[C_{3}H_{5}O_{2}]^{+}$	$[C_{3}H_{5}O_{2}]^{+}$	$[C_{3}H_{5}O_{2}]^{+}$	$[C_{3}H_{5}O_{2}]^{+}$	$[C_{3}H_{5}O_{2}]^{+}$
	74		UI		UI	UI	UI
	75	UI	UI		UI	UI	UI
	79	UI				UI	UI
	80				UI	UI	UI
	81	$[C_5H_5O]^+$	$[C_5H_5O]^+$	$[C_5H_5O]^+$	$[C_5H_5O]^+$	$[C_5H_5O]^+$	$[C_5H_5O]^+$
	82	UI			UI	UI	UI
	83	UI	UI		UI	UI	UI
	85	$[C_4H_5O_2]^+$	$[C_4H_5O_2]^+$	$[C_4H_5O_2]^+$	$[C_4H_5O_2]^+$	$[C_4H_5O_2]^+$	$[C_4H_5O_2]^+$
	86		UI	UI	UI	UI	UI
Clusses	87	$[C_4H_7O_2]^+$	$[C_4H_7O_2]^+$	$[C_4H_7O_2]^+$	$[C_4H_7O_2]^+$	$[C_4H_7O_2]^+$	$[C_4H_7O_2]^+$
Glucose	88	UI			UI	UI	UI
	89	UI	UI		UI	UI	UI
	91	$[M+H-(H_2O)_5]^+$	$[M+H-(H_2O)_5]^+$	$[M+H-(H_2O)_5]^+$	$[M+H-(H_2O)_5]^+$	$[M+H-(H_2O)_5]^+$	$[M+H-(H_2O)_5]^+$
	92				UI	UI	UI
	93	UI	UI	UI		UI	UI
	97	$[C_5H_5O_2]^+$	$[C_5H_5O_2]^+$	$[C_5H_5O_2]^+$	$[C_5H_5O_2]^+$	$[C_5H_5O_2]^+$	$[C_5H_5O_2]^+$
	98				UI	UI	UI
	99	$[C_5H_7O_2]^+$	$[C_5H_7O_2]^+$	$[C_5H_7O_2]^+$	$[C_5H_7O_2]^+$	$[C_5H_7O_2]^+$	$[C_5H_7O_2]^+$
	100				UI	UI	UI
	101	$[C_5H_9O_2]^+$	$[C_5H_9O_2]^+$	$[C_5H_9O_2]^+$	$[C_5H_9O_2]^+$	$[C_5H_9O_2]^+$	$[C_5H_9O_2]^+$
	102				UI	UI	UI
	103	$[C_4H_7O_3]^+$	$[C_4H_7O_3]^+$	$[C_4H_7O_3]^+$	$[C_4H_7O_3]^+$	$[C_4H_7O_3]^+$	$[C_4H_7O_3]^+$
	104				UI	UI	UI
	105	$[C_4H_9O_3]^+$	$[C_4H_9O_3]^+$		$[C_4H_9O_3]^+$	$[C_4H_9O_3]^+$	$[C_4H_9O_3]^+$
	109	$[M+H-(H_2O)_4]^+$	$[M+H-(H_2O)_4]^+$	$[M+H-(H_2O)_4]^+$	$[M+H-(H_2O)_4]^+$	$[M+H-(H_2O)_4]^+$	$[M+H-(H_2O)_4]^+$
	110				UI	UI	UI
	111				UI	UI	UI

	115	$[C_5H_7O_3]^+$	$[C_5H_7O_3]^+$	$[C_5H_7O_3]^+$	$[C_5H_7O_3]^+$	$[C_{5}H_{7}O_{3}]^{+}$	$[C_5H_7O_3]^+$
	116				UI	UI	UI
	117	$[C_5H_9O_3]^+$	$[C_5H_9O_3]^+$	$[C_5H_9O_3]^+$	$[C_5H_9O_3]^+$	$[C_5H_9O_3]^+$	$[C_5H_9O_3]^+$
	118				UI	UI	UI
	119	UI	UI	UI	UI	UI	UI
	121	$[C_4H_9O_4]^+$	$[C_4H_9O_4]^+$		$[C_4H_9O_4]^+$	$[C_4H_9O_4]^+$	$[C_4H_9O_4]^+$
	123	$[C_4H_{11}O_4]^+$	$[C_4H_{11}O_4]^+$		$[C_4H_{11}O_4]^+$	$[C_4H_{11}O_4]^+$	$[C_4H_{11}O_4]^+$
	127	$[M+H-(H_2O)_3]^+$	$[M+H-(H_2O)_3]^+$	$[M+H-(H_2O)_3]^+$	$[M+H-(H_2O)_3]^+$	$[M+H-(H_2O)_3]^+$	$[M+H-(H_2O)_3]^+$
	128	UI			UI	UI	UI
	129				UI		UI
	130	UI				UI	UI
	133	UI			UI	UI	UI
	135	UI			UI	UI	UI
	137				UI	UI	UI
	139		UI		UI		UI
	141			UI	UI	UI	UI
Glucose	143		UI	UI		UI	
	144		UI				
	145	$[M+H-(H_2O)_2]^+$	$[M+H-(H_2O)_2]^+$	$[M+H-(H_2O)_2]^+$	$[M+H-(H_2O)_2]^+$	$[M+H-(H_2O)_2]^+$	$[M+H-(H_2O)_2]^+$
	146	UI	UI			UI	UI
	147				UI		
	148	UI	UI			UI	UI
	151				UI	UI	UI
	153				UI	UI	UI
	155		UI				
	157				UI	UI	UI
	159				UI		
	161		UI				
	163	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$	$[M-OH]^+$
	164	UI			UI	UI	UI
	165		UI				
	167						UI
	173		UI				
	169, 175				UI		
Methanol	15	$[CH_3]^+$					$[CH_3]^+$
	18						$[NH_4]^+$

	23	UI				
Davad din a	39					$[HC_2N]^+$ or $[C_3H_3]^+$
	41	UI				
rynume	43					$[C_2H_5N]^+$
	53	$[C_{3}H_{3}N]^{+}$				$[C_{3}H_{3}N]^{+}$
	59, 77	UI	UI			
	79	UI	UI		UI	UI

Table S1. Fragment peaks, and their respective mass, detected in cation mode for the investigated organics in pure water matrix (Napoleoni et al. 2022), in 0.01M, 0.1M and 1M MgSO₄ and 0.01M, 0.1M and 1M H₂SO₄ matrices, at all investigated delay times and laser power intensities. UI stands for unidentified ion species. Species written in blue are tentative identifications.

		MgSO ₄			H ₂ SO ₄			
	m/z	pure H ₂ O	0.01M	0.1M	1M	0.01M	0.1M	1M
	16	[NH ₂] ⁻		1			•	
	26	$[C_2H_2]^-$ or $[CN]^-$						
	27			UI				
	42	$[C_2H_4N]^-$	$[C_2H_4N]^{-1}$			$[C_2H_4N]^-$		
	43	UI		UI				
	44, 45, 46	UI						
5-amino-1-pentanol	53					UI		
	59, 60	UI						
	61	UI		UI				
	62, 63, 64, 77, 78, 79, 80, 81, 83	UI						
	93					UI		
	95, 97, 98	UI						
	15	[CH ₃] ⁻	[CH ₃] ⁻	[CH ₃] ⁻	[CH ₃] ⁻			
	36	UI						
Acetic acid	41	[M-H ₃ O] ⁻	[M-H ₃ O] ⁻					
	54	UI						
	58	UI	UI	UI				
	59	UI						
	77	[M-COOH] ⁻	[M-COOH] ⁻	[M-COOH] ⁻	[M-COOH] ⁻			
Benzoic acid	95	[M- COOH+(H ₂ O)] ⁻						
	113	[M- COOH+(H ₂ O) ₂] ⁻						
	16	[NH ₂] ⁻						
	26	$[C_2H_2]^-$ or $[CN]^-$	$[C_2H_2]^-$ or $[CN]^-$	$[C_2H_2]^-$ or $[CN]^-$	$[C_2H_2]^-$ or $[CN]^-$			
Putylomino	32	$[N_2H_4]^-$						
Dutyiaiiiiie	42		$[C_2H_4N]^{-}$	$[C_2H_4N]^-$	$[C_2H_4N]^-$			
	44	$[C_2H_6N]^-$	$[C_2H_6N]^-$	$[C_2H_6N]^-$				
	49	UI						

	53			UI		
	60			UI		
	61					UI
	62	UI	$[C_2H_4N(H_2O)]^{-1}$	$[C_2H_4N (H_2O)]^{-1}$		
	64		UI	UI	UI	
	66	UI		UI		
	67	UI				
	68			UI		
	69		UI	UI		
	70	UI				
	71			UI		
	31	UI				
	41				UI	
	43	UI			UI	
	45	UI		UI	UI	
	55, 57	UI				
	58	$[C_4H_{10}]^-$				
	59	$[C_2H_3O_2]^-$	$[C_2H_3O_2]^-$	$[C_2H_3O_2]^-$	$[C_2H_3O_2]^-$	
	62	UI				
	71	[C ₃ H ₃ O ₂] ⁻ or [M-H-(H ₂ O) ₆] ⁻	[C ₃ H ₃ O ₂] ⁻ or [M-H-(H ₂ O) ₆] ⁻		[C ₃ H ₃ O ₂] ⁻ or [M-H-(H ₂ O) ₆] ⁻	
Glucose	73	$[C_{3}H_{5}O_{2}]^{-}$				
	75	UI				
	77	$[C_2H_5O_3]^-$	$[C_2H_5O_3]^-$			
	78, 83, 84	UI				
	85	UI	UI			
	87	$[C_4H_7O_2]^-$				
	89	[C ₃ H ₅ O ₃] ⁻ or [M- H-(H ₂ O) ₅] ⁻	[C ₃ H ₅ O ₃] ⁻ or [M- H-(H ₂ O) ₅] ⁻		[C ₃ H ₅ O ₃] ⁻ or [M- H-(H ₂ O) ₅] ⁻	
	90, 95, 97, 99, 100	UI				
	101	$[C_4H_5O_3]^-$	$[C_4H_5O_3]^-$			
	102, 103, 105	UI				

	107	$[C_{3}H_{7}O_{4}]^{-}$ or $[M-H_{-}(H_{2}O)_{4}]^{-}$	
	112	UI	
	113	$[C_{5}H_{5}O_{3}]^{-}$	$[C_{5}H_{5}O_{3}]^{-}$
	114	UI	
	119	[C ₄ H ₇ O ₄] ⁻	$[C_4H_7O_4]^-$
	120	UI	
	121		UI
	125	[M-H-(H ₂ O) ₃] ⁻	
	131	UI	
	135	$[C_5H_{11}O_4]^-$	
	137	[C ₄ H ₉ O ₅] ⁻	
	141		UI
	143	[M-H-(H ₂ O) ₂] ⁻	$[M-H-(H_2O)_2]^-$
	149, 155	UI	
	159		
	161	[M-H-(H ₂ O)] ⁻	[M-H-(H ₂ O)] ⁻
	167	UI	
	171		
	177		UI
	178		UI
Methanol			
	22, 33	UI	
	42	$[C_2H_4N]^-$	
	44, 45, 59	UI	
Pyridine	61	[C ₅ H] ⁻	
	63	UI	
	75		UI
	77	UI	

Table S2. Fragment peaks, and their respective mass, detected in anion mode for the investigated organics in pure water matrix (Napoleoni et al. 2022), in 0.01M, 0.1M and 1M MgSO₄ and 0.01M, 0.1M and 1M H₂SO₄ matrices, at all investigated delay times and laser power intensities. UI stands for unidentified ion species.