Transition from orogen-perpendicular to orogen-parallel exhumation and cooling during crustal indentation — Key constraints from 147Sm/144Nd and 87Rb/87Sr geochronology (Tauern Window, Alps)

Silvia Favaro a,⁎, Ralf Schuster b, Mark R. Handy a, Andreas Scharf a,1, Gerhard Pestal b

Abstract

The core of the Alpine orogen in the Eastern Alps (Tauern Window) experienced a change from orogen-normal shortening and post-nappe doming to predominantly orogen-parallel extension and tectonic unroofing during late Oligocene to Miocene northward indentation of the Adriatic Microplate. A new 147Sm/144Nd isochron age of 25.7 ± 0.9 Ma on a garnet-bearing assemblage from the lowest nappe complex forming a dome in the eastern part of the Tauern Window indicates that high temperatures related to post-nappe Barrovian-type metamorphism overlapped in time with the onset of doming. New 87Rb/87Sr biotite ages from this same complex combined with previously published 87Rb/87Sr white mica ages suggest that doming and exhumation began no later than 28 Ma immediately in front of indenting Austroalpine crustal blocks, then migrated laterally to the ESE during rapid exhumation and orogen-parallel stretching beginning at about 23 Ma. Rapid cooling ended at approximately 17 Ma in the footwall of the Katschberg Normal Fault, which delimits the eastern margin of the Tauern Window. A similar pattern of migrating doming, orogen-parallel extension and cooling is recognized in the western part of the Tauern Window, where rapid exhumation began at about 20 Ma, some 2–3 Ma later than in the eastern part. This difference in the onset of rapid exhumation as well as the overall migration of doming from the center to the ends of the Tauern Window are attributed to fragmentation of the aforementioned Austroalpine blocks along the leading edge of the main Adriatic indenter (Southern Alps) as this indenter advanced to the north.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Orogenic crust responds to indentation by a combination of crustal thickening, erosion and orogen-parallel extension leading to lateral orogen escape (Royden and Burchfield, 1989; Ratschbacher et al., 1989, 1991b; Selverstone, 2005). The response to indentation is influenced by several factors including the shape and rigidity of the indenter as well as the thermo-mechanical state of the orogenic crust (e.g., Tapponnier et al., 1986; Rosenberg et al., 2007; Luth et al., 2013).

The Tauern Window in the Eastern Alps (Fig. 1) is an excellent place to study indentation processes because it reveals an almost complete stratigraphic and tectonic record of the transition from collision to indentation. It contains part of the Alpine orogenic wedge with thrust slices of European continental crust (Subpenninic nappes) and Alpine Tethyan oceanic units (Penninic nappes) accreted to overlying Austroalpine units derived from the margin of the Adriatic microplate (e.g., Kober, 1920; Staub, 1924; Exner, 1971, 1982; Tollmann, 1977; Thiele, 1980; Kurz et al., 1996, 1998; Schmid et al., 2013). The Tauern Window formed when the leading edge of this microplate pushed northward into the Alpine orogenic wedge (Fig. 1, Ratschbacher et al., 1991b; Scharf et al., 2013a; Schmid et al., 2013). Two amphibolite-facies metamorphic domes, the Eastern and Western Tauern Domes (ETD and WTD in Fig. 1), exhumed the deepest nappes of highly metamorphosed European continental crust (Venediger Nappe System). These domes are delimited by low-angle normal faults, the Brenner and Katschberg Normal Faults (BNF, KNF in Fig. 1) that accommodated orogen-parallel stretching in Miocene time (e.g., Behrmann, 1988; Selverstone, 1988; Genser and Neubauer, 1989; Scharf et al., 2013a; Schneider et al., submitted for publication). Both the ETD and WTD show concentric Oligo–Miocene cooling age patterns for the 87Rb/87Sr white mica (500 °C) and biotite (300 °C) systems, but the ages in the WTD are younger than in the ETD by some 2–3 Ma (Fügenschuh et al., 1997; Frisch et al., 1998, 2000; Linzer et al., 2002; Handy et al., 2005; Luth and Willingshofer, 2008; Scharf et al., 2013a; Scharf et al., submitted for publication). Existing studies show that the cooling history may be heterogeneous even on the scale of the domes themselves (Reddy et al., 1993); in the ETD, 87Rb/87Sr white mica and biotite ages in the...
northwestern part are some 5 Ma older than in the southeastern part (Cliff et al., 1985).

Interpreting the cooling history of deeply buried rocks in terms of exhumation is tricky because rocks are poor heat conductors and their rise to the surface in active orogens is usually faster than their ability to thermally equilibrate (e.g., England and Thompson, 1984). If it is presumed that the heterogeneous cooling of the ETD obtained from existing radiometric ages is real, then this cooling can be interpreted either to indicate coeval exhumation at different exhumation rates (i.e., slower in the northwestern than in the southeastern part of the ETD) and/or diachronous exhumation that migrated from northwest to southeast across the ETD. This dilemma bears obvious implications for the response of the orogenic crust to indentation and lateral escape; in the former case, exhumation was immediate but non-uniform, whereas in the latter, exhumation migrated away from the indenting Austroalpine blocks, affecting successively more external parts of the Alpine wedge. Testing these hypotheses is one of the main goals of this paper.

The duration of orogen-parallel stretching along the Katschberg Normal Fault, as well as the effect of the indenter shape on the cooling and exhumation pattern remain enigmatic; in particular, the timing of the onset of doming and normal faulting is not yet well constrained. Previous work has suggested that rapid exhumation in the Tauern Window may have been diachronous, with ETD beginning to exhume already before the onset of rapid exhumation in the WTD at 20 Ma and prior to northward motion of the Southern Alps indenter along the Giudicarie Belt beginning at 21–23 Ma (Scharf et al., 2013a). This belt comprises both oblique thrusts and a sinistral strike-slip fault that offsets the Periadriatic Fault (Fig. 1; e.g., Pomella et al., 2012). Dating of structurally key minerals with isotopic closure temperatures in the 300–500 °C range potentially enables us to determine the onset of rapid cooling and, therefore, place time limits on the beginning of rapid exhumation.

This paper integrates new 87Rb/87Sr and 147Sm/144Nd ages with microstructural studies of key mineral assemblages (garnet, white mica and biotite) to date the onset of tectonic unroofing and to show how exhumation and cooling migrated within the ETD. By relating new and existing ages to the first-order structures of indentation, a new model is proposed in which orogen-normal exhumation was transitional to orogen-parallel exhumation during fragmentation and faulting of the leading edge of the advancing Adriatic indenter. Finally, rapid cooling of the European orogenic crust in the ETD is discussed in the broader context of the evolution of the Tauern Window and the Alpine orogen. It is shown that diachronous exhumation of the Tauern Window was indeed related to this fragmentation.

2. Geological setting

The Tauern Window in the Eastern Alps contains an almost complete record of Alpine mountain building, from Early Mesozoic rifting and
spreading, through Tethyan subduction and Adria–Europe collision, to inden
tation (e.g., Trümpy, 1973; Dal Piaz, 1999; Schmid et al., 2004). The
orogenic evolution of units in the Tauern Window is divided into five
tectonometamorphic phases that were broadly continuous in Late Creta-
ceous to Miocene times (Schmid et al., 2013): (D1) southward subduc-
tion of Alpine Tethys represented by the Glockner Nappe System (green
unit in Fig. 1); (D2) thrusting of the Glockner Nappe System onto the distal
European margin represented by the Modereck Nappe System (blue
unit in Fig. 1); (D3) isoclinal folding of this nappe stack during continued
thrusting onto the European margin; (D4) formation of a duplex in the
accreting European margin (Venediger Nappe System, pink units in
Fig. 1) followed by Barrow-type metamorphism (Taurernkristallisation;
e.g., Sander, 1911; Droop, 1985; Hoinkes et al., 1999; Dachs et al., 2005)
and Periodic magmatism (e.g., Rosenberg, 2004); (D5) indentation of the
Alpine orogeny crust by the Austroalpine units at the leading edge of the
Adriatic indenter (Scharf et al., 2013a; Schneider et al., submitted for publication) represented by the Southern Alps
(yellow unit in Fig. 1). Indentation involved coeval doming as well as
E–W directed orogen–parallel normal faulting. Together, these struc-
tures accommodated orogen-normal shortening and lateral (eastward)
escape of orogenic crust away from the front of the indenter (Scharf et al., 2013a; see evolutionary cross sections in Fig. 13 of Schmid et al.,
2013).

It is important to note that by the beginning of Adria–Europe conver-
gence in Late Cretaceous time, most of the Austroalpine units lying
above and to the south of the Penninic nappe pile had already cooled
to below 300 °C (e.g., Schuster et al., 2004). This rendered the units be-
tween the Tauern Window and Periodic Fault semi-rigid blocks
which were exhumed and deformed during the advanced stages of oro-
genesis, as described below (Ratschbacher et al., 1991b; Stöckhert et al.,
1999; Mancktelow et al., 2001; Linzer et al., 2002). Indentation of the
Eastern Alps by the Southern Alps was accommodated largely by the si-
nistral transpressional Giudicarie Belt (GB in Fig. 1), which separates the
eastern part of the Adriatic indenter from the somewhat older Oligo-
Miocene western indenter and crustal wedge in the Central and West-
ern Alps (e.g., Schmid et al., 2004; Handly et al., 2015). The western
Adriatic indenter is not regarded further as it is not relevant to indenta-
tion in the Eastern Tauern Window.

The Tauern Window contains two domes: the Western Tauern Dome and the Eastern Tauern Dome (Fig. 1) that deform the D4 nappe stack and coincide with concentric isograds and maximum temperature lines
(Fig. 1). The ETD is characterized by two D5 subdomes that fold the earlier
D2, D3 and D4 collisional structures (Figs. 1 and 4): (1) the Hochalm
Subdome, a broad box-shaped antiform that affects the D4 Göss, Hochalm and Romate nappes as well as the overlying D2 and D3 Glockner and
Modereck nappe systems; and (2) a tight elongate fold with doubly
plunging axes, the Sonnblick Subdome, which folds the Sonnblick
Nappe System (Fig. 2). The basement protoliths are mostly Variscan to
Mesozoic sedimentary rocks which are intruded by Mesozoic plutons and
have been affected by Variscan to post-Variscan (late Paleozoic–early Mesozoic) intrusives. The D4 Göss, Hochalm and Romate nappes are
thrusting onto the European margin; (D4) formation of a duplex in the
Subpenninic nappes as well as the Glockner and Modereck nappe systems. The Sonnblick Lamellae (Fig. 2, Exner, 1962, 1964) is the highly sheared equivalent of the Sonnblick Subdome which runs parallel to the Mallnitz Synform (Kober, 1920), an acylindrical D5 fold, which tightens from NW to SE and separates the Hochalm and Sonnblick subdomes. The D5 Sonnblick Lamellae and Mallnitz Synform are progressively sheared to the SE, forming a mylonitic belt that bends into concordance with the SE-dipping, low-angle Katschberg Normal Fault (Fig. 2, KNF, e.g., Genser and Neubauer, 1989; Becker, 1993; Scharf et al., 2013a). The WTD and ETD were kinematically linked to large, conjugate strike-slip faults, in par-
ticular for the WTD, the sinistral Salzach ETd with the Eastern Tauern Dome (Fig. 1) that deform the D4 nappe stack and coincide with concentric isograds and maximum temperature lines
(Fig. 1) followed by Barrow-type metamorphism (Taurernkristallisation;
e.g., Sander, 1911; Droop, 1985; Hoinkes et al., 1999; Dachs et al., 2005)
and Periodic magmatism (e.g., Rosenberg, 2004); (D5) indentation of the
Alpine orogeny crust by the Austroalpine units at the leading edge of the
Adriatic indenter (Scharf et al., 2013a; Schneider et al., submitted for publication) represented by the Southern Alps
(yellow unit in Fig. 1). Indentation involved coeval doming as well as
E–W directed orogen–parallel normal faulting. Together, these struc-
tures accommodated orogen-normal shortening and lateral (eastward)
escape of orogenic crust away from the front of the indenter (Scharf et al., 2013a; see evolutionary cross sections in Fig. 13 of Schmid et al.,
2013).

4. Analytical methods: Sample preparation for 87Rb/87Sr and 147Sm/144Nd dating

The samples were mechanically prepared for 87Rb/87Sr and 147Sm/144Nd isotope analyses at the Geological Survey of Austria in Vienna. Before separating the minerals, their weathered surfaces were
removed from the sample material. Minerals were separated by the standard methods of crushing, grinding, sieving and magnetic separa-
tion. Garnet and chloritoid separates were hand-picked under the bin-
ocular microscope from sieve fractions of 0.2–0.3 mm and were cleaned in distilled water and acetone. Garnet was further leached in 6n HCl at 100 °C for several hours. Samples used for dissolution weighed about 100 mg for whole rock powder, ~200 mg for biotite and white mica and 30–45 mg for garnet and chloritoid. Chemical preparation was performed at the Geological Survey of Austria in Vienna and at the Department of Lithospheric Research at the University of Vienna. The chemical sample preparation follows the procedure described by Sölva et al. (2005). Element concentrations were determined by isotope
dilution using mixed 147Sm/150Nd and 84Rb/87Sr spikes. Total procedural blanks are ≤ 300 pg for Nd and Sm and ≤ 1 ng for Rb and Sr.

Rb ratios were measured at the Department of Geological Sciences, University of Vienna with a Finnigan® MAT 262, whereas Sr, Sm and Nd ratios were analyzed with a ThermoFinnigan® Triton TI TIMS. All elements were run from Re double filaments, except Rb which was evaporated from a Ta single filament. During measuring, the La Jolla standard yielded 143Nd/144Nd = 0.511841 ± 1 ($n = 13$, 2σ) on the Triton TI, whereas standard NBS987 yielded a ratio of 86Sr/87Sr = 0.710270 ± 3 ($n = 12$, 2σ) and 0.710274 ± 2 ($n = 21$, 2σ) respectively was determined. Errors of 1% were determined for the 87Rb/86Sr and 147Sm/144Nd ratios based on interactive sample analysis and spike recalibration. Ages were calculated with the software ISOPLOT/Ex (Ludwig, 2001; 2003) using the Sm- and Rb-decay constants of 6.54×10^{-12} a$^{-1}$ and 1.42×10^{-11} a$^{-1}$, respectively.

5. Results

5.1. 147Sm/144Nd garnet ages

Sample 155-6-2011 (location in Table 1 and Fig. 2) is ideally suited to place an upper age limit on the Barrow-type, amphibolite-facies metamorphism (Tauernkrystalisation) because it comes from post-Variscan cover and contains both garnet and chloritoid that overgrow the folded S4 foliation formed during duplex formation in the Venediger Nappe System (Fig. 4). The results of the 147Sm/144Nd measurements are given in Table 2.

Two fractions of garnet (Grt1, Grt2), chloritoid (Cld) and whole rock (WR) were analyzed. The whole rock is characterized by a δNd(CHUR) of 5.2, a 147Sm/144Nd ratio of ~0.14 and has Sm (33.5 ppm) and Nd (7.81 ppm) contents that are in the range typical for metapelites (McCulloch and Wasserburg, 1978). Both garnet fractions show low concentrations of Sm (~1 ppm) and Nd (~0.4 ppm) and remarkably high 147Sm/144Nd ratios of ~1.3 and ~1.8, respectively (Table 2). The calculated isochron defines an age of 25.7 ± 0.9 Ma (Fig. 4).

5.2. 87Rb/86Sr micas ages

Biotite and whole rock (WR) were analyzed in a total of fifteen samples, and two of these samples were also analyzed for white mica (Table 1). Whole rocks, as well as the corresponding biotite separates, have a broad range of Rb and Sr content and the biotites exhibit a wide range of 87Rb/86Sr ratios (50–700). The 87Rb/86Sr ages and analyses are listed in Table 3. In the following, we discuss the results with regard to the different D5 structures of the ETD.

5.2.1. Hochalm Subdome

All ten samples analyzed come from the southwestern part of the Hochalm Subdome adjacent to the Mallnitz Synform, but away from (north of) areas affected by pervasive F5 folding and S5 schistosity.
The micas in these samples thus define older foliations, usually S4 which was related to nappe stacking and the formation of the Venediger Duplex. Two of these samples experienced more than 550 °C (Fig. 2) defined by peak-temperature assemblages of the Tauernkristallisation (Hoinkes et al., 1999) and by Raman microspectroscopy on carbonaceous material (Scharf et al., 2013b). The highest temperature in the area, 610 °C, is measured in the core of the ETD just east of the area shown in Fig. 2 (Scharf et al., 2013b).

These two samples yield biotite ages in the narrow range of 17.9 to 17.4 ± 0.2 Ma and are the youngest biotite ages from the Hochalm Subdome. White mica from the white mica-biotite granitic gneiss (182-1-2005; Schönanger, central part of the Hochalm Subdome) yields 21.0 ± 0.2 Ma, whereas another muscovite from an orthogneiss (181/1/2011) yields 24.4 ± 0.3 Ma, whereas another muscovite from an orthogneiss (182-1/2005; Schönanger, central part of the Hochalm Subdome) yields 21.1 ± 0.2 Ma. Both white mica ages are older than the calculated ages (17.5 ± 0.2 Ma for the augengneiss of the Sonnblick Lamellae.

The remaining eight samples come from areas between the 500° and 550 °C isotherms and yield biotite ages between 17.7 ± 0.2 Ma and 20.6 ± 0.2 Ma. The scatter in ages is remarkably small given the different protoliths, foliations and 87Rb/86Sr systematics of these samples (Table 3). Two of these samples come from the rim of the Hochalm Nappe, one in the proximity of Kolbnitz (04R64) and one north of Mallnitz (155-2/2011, Gamskarspitze). Four samples are of relatively undeformed, biotite-rich Romate syenitic gneiss, whereas two come from the post-Variscan cover of the Romate Nappe (Perman Woisken Schist Complex). Only sample 04R64 has a composite S4–S5 foliation due to its proximity to the KNF (Scharf et al., 2013a), whereas sample 155-2/2011 is located just below the contact with the Romate gneiss and preserves a strong D4 foliation. The micas in the syenitic gneiss define older, pre-D4 foliations, whereas the garnet-bearing muscovite schist (11R35, Fig. 3d) collected near the Venediger Duplex roof thrust has a strong S4 foliation comprising white mica, biotite and retrograde chlorite. The biotite concentric from this schist has a high Sr content (17 ppm) resulting in a low 87Rb/86Sr ratio of ~100. This high Sr content reflects the presence of tiny Sr-rich inclusions, most probably ofapatite.

Sample (11R30) from the Kolbnitz area (Fig. 2) contains biotite in a quartz vein. These extensional veins trend northeast–southwest and have been well studied because of their gold content ("Taurergold"; Feitzinger and Paar, 1991). The biotite is highly radiogenic (87Rb/86Sr ~700) and its orientation parallel to the KNF suggests that it formed during D5 orogen-parallel extension.

5.2.2. Sonnblick Subdome

A paragneiss (sample 11R40) from the Sonnblick Nappe (location north of Obervellach, Fig. 2) and an augengneiss from the “Sonnblick Lamellae" close to Kolbnitz (sample 11R31, Figs. 2, 3a) contain biotite that defines the S5 foliation in the Katschberg Shear Zone System. The biotites from both samples have high Sr contents (17 and 34 ppm) and correspondingly low 87Rb/86Sr ratios (56 and 74 ppm), pointing to the presence of Sr-rich inclusions within the biotites. The calculated ages are 21.0 ± 0.2 Ma for the paragneiss near Obervellach, and 17.3 ± 0.2 Ma for the augengneiss of the Sonnblick Lamellae.

5.2.3. Mallnitz Synform

Sample 11R32 from the Kaponig Valley (Fig. 2) is a chlorite–schist with aggregates of biotite up to several millimeters long that are orientated subparallel to axial planes of F5 folds near the mylonitic belt that connects along strike to the SE with the KNF. Samples 11R46 and 11R52 from Auernig (Fig. 2) are prasinites (epidote, plagioclase, greenish-brown biotite, chlorite and minor quartz, tourmaline and apatite). The biotites in these samples are probably pre-D4 because they originate in the isoclinally folded (D3) Glockner Nappe System that overlies the D4 roof thrust of the Venediger Duplex. All three samples have biotites characterized by low Sr content (~4 ppm), relatively low Rb content (200–380 ppm) and by 87Rb/86Sr ratios of 150–260. The biotite age values are in the range of 17.5–19.5 ± 0.2 Ma.

Table 1
Investigated samples and relevant information (coordinates: WGS 84).

<table>
<thead>
<tr>
<th>Sample nr.</th>
<th>Method Tc</th>
<th>Lithology</th>
<th>Lithostratigraphy</th>
<th>Nappe</th>
<th>Peak T</th>
<th>Locality</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11R32</td>
<td>Rb-Sr bt 300 °C</td>
<td>Greenschist</td>
<td>Sonnblick augengneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>Kaponik valley, E’ Obervellach</td>
<td>13° 13’</td>
<td>06.5’</td>
</tr>
<tr>
<td>11R46</td>
<td>Rb-Sr bt 300 °C</td>
<td>Prasenite</td>
<td>Glockner Nappe sensu stricito</td>
<td>Kolbnitz</td>
<td>500–550 °C</td>
<td>Auenig, E’ Mallnitz</td>
<td>13° 11’</td>
<td>58.9’</td>
</tr>
<tr>
<td>11R52</td>
<td>Rb-Sr bt 300 °C</td>
<td>Prasenite</td>
<td>Glockner Nappe sensu stricito</td>
<td>Kolbnitz</td>
<td>500–550 °C</td>
<td>Auenig, E’ Mallnitz</td>
<td>13° 10’</td>
<td>41.4’</td>
</tr>
<tr>
<td>11R31</td>
<td>Rb-Sr bt 300 °C</td>
<td>Augengneiss</td>
<td>Sonnblick augengneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>E’ Kolbnitz</td>
<td>46° 53’</td>
<td>03.8’</td>
</tr>
<tr>
<td>11R40</td>
<td>Rb-Sr bt 300 °C</td>
<td>Micaschist</td>
<td>Syenitic orthogneiss</td>
<td>Romate Nappe</td>
<td>500–550 °C</td>
<td>W’ Obervellach</td>
<td>13° 11’</td>
<td>23.3’</td>
</tr>
<tr>
<td>11R29</td>
<td>Rb-Sr bt 300 °C</td>
<td>Syenitic orthogneiss</td>
<td>Romate orthogneiss</td>
<td>Romate Nappe</td>
<td>500–550 °C</td>
<td>W’ Mallnitz</td>
<td>13° 09’</td>
<td>56.8’</td>
</tr>
<tr>
<td>11R30</td>
<td>Rb-Sr bt 300 °C</td>
<td>Grt-mica schist</td>
<td>Romate orthogneiss</td>
<td>Romate Nappe</td>
<td>500–550 °C</td>
<td>Riekengraben, E’ Kolbnitz</td>
<td>13° 18’</td>
<td>37.9’</td>
</tr>
<tr>
<td>11R34</td>
<td>Rb-Sr bt 300 °C</td>
<td>Syenitic orthogneiss</td>
<td>Romate orthogneiss</td>
<td>Romate Nappe</td>
<td>500–550 °C</td>
<td>NW’ Mallnitz</td>
<td>13° 07’</td>
<td>48.2’</td>
</tr>
<tr>
<td>11R35</td>
<td>Rb-Sr bt 300 °C</td>
<td>Grt mica schist</td>
<td>Grt bearing granite</td>
<td>Romate Nappe</td>
<td>500–550 °C</td>
<td>W’ Mallnitz</td>
<td>46° 59’</td>
<td>16.4’</td>
</tr>
<tr>
<td>SF08-11</td>
<td>Rb-Sr bt 300 °C</td>
<td>Syenitic orthogneiss</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>Sportgastein</td>
<td>13° 04’</td>
<td>10.7’</td>
</tr>
<tr>
<td>155/6/2011</td>
<td>Sm-Nd girt 500°</td>
<td>Grt-chloritoid mica schist</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NW’ Mallnitz</td>
<td>47° 01’</td>
<td>18.4’</td>
</tr>
<tr>
<td>181/1/2011</td>
<td>Rb-Sr bt 300 °C</td>
<td>Syenitic orthogneiss</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NE’ Kolbnitz</td>
<td>46° 59’</td>
<td>20.1’</td>
</tr>
<tr>
<td>155/2/2011</td>
<td>Rb-Sr bt 300 °C</td>
<td>Granitic orthogneiss</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NW’ Mallnitz</td>
<td>47° 00’</td>
<td>27.9’</td>
</tr>
<tr>
<td>05R29</td>
<td>Rb-Sr bt 300 °C</td>
<td>Granitic orthogneiss</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NE’ Kolbnitz</td>
<td>45° 55’</td>
<td>01.4’</td>
</tr>
<tr>
<td>04R64</td>
<td>Rb-Sr bt/wm 300, 500 °C</td>
<td>Grt bearing granite</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NE’ Kolbnitz</td>
<td>46° 54’</td>
<td>12.1’</td>
</tr>
<tr>
<td>182/1/2005</td>
<td>Rb-Sr bt/wm 300, 500 °C</td>
<td>Granitic orthogneiss</td>
<td>Sonnblick orthogneiss</td>
<td>Sonnblick Nappe</td>
<td>500–550 °C</td>
<td>NE’ Kolbnitz</td>
<td>46° 56’</td>
<td>42.7’</td>
</tr>
</tbody>
</table>

5
6. Discussion

6.1. Age of Alpine peak-temperature conditions

The age of the Barrow-type thermal event (Tauernkristallisation) in the Tauern Window is broadly constrained by cross-cutting relationships: Peak-temperature (peak-T) lines form a lopsided concentric pattern in the ETD that cuts and therefore post-dates D4 nappe contacts (Fig. 1, Droop, 2013; Scharf et al., 2013b). Maximum temperatures range from ~612 °C in the core of the EDT to only ~450 °C along the KNF (Scharf et al., 2013b). The concentric pattern itself reflects D5 doming in the Hochalm Subdome, while the parallelism of peak-T lines to the KNF (Fig. 1) is attributed to shearing of isotherms into concordance with the footwall of the KNF (Scharf et al., 2013b). These overprinting relations indicate that the Tauernkristallisation occurred prior to the activity of the KNF in early Miocene time (Scharf et al., 2013a). The

Fig. 3. Microstructures indicative of deformation at peak-temperature conditions in the ETD: (a) Sonnblick augengneiss (sample 11R31) with S5 is defined by biotite and white mica, interpreted to have equilibrated at or below ~500 °C (see text). Cores of K-feldspar augen have perthitic exsolution and inclusions of euhedral plagioclase crystals, whereas rims exhibit dynamic recrystallization of feldspar intergrown with quartz in the pressure shadows; (b) Romate syenitic orthogneiss (sample SF88–11) in the northwestern part of the Hochalm Subdome shows dynamic recrystallization of feldspar and of minor amounts of quartz; dynamic recrystallization interpreted to be related to D4; (c) granite from the Hochalm Subdome (sample OSR25) containing inclusion-free magmatic garnet (Grt1) overgrown by fine grains of metamorphic garnet (Grt2) in contact with biotite; Grt2 is interpreted to have grown at peak temperatures of ~500 °C; (d) Grt2 from post-Variscan cover (Woisken Schist Complex, sample 11R35) of the Romate Gneiss with F4-folded matrix comprising peak-temperature assemblage of white mica, biotite and staurolite (see inset). This assemblage is interpreted to have grown during the Tauernkristallisation.

Fig. 4. (a) Garnet-chloritoid mica schist from the post-Variscan cover in the western part of the Hochalm Subdome (Woisken Schist Complex, sample 155-6-2011). Sample contains quartz, muscovite, biotite, garnet and minor chlorite, staurolite, chloritoid and epidote. Garnet (Grt) and chloritoid (Cld) are interpreted to overgrow the folded S4 foliation defined mainly by white mica; (b) 143Nd/144Nd vs 147Sm/144Nd plot for two garnet fractions (Grt1, Grt2), chloritoid (Cld) and whole rock (WR).
Tauernkristallisation is therefore interpreted as the thermal response to crustal thickening by D4 nappe stacking and duplex formation during Adria–Europe collision (Kurz et al., 2008; Schmid et al., 2013).

Duplex formation must post-date subduction of the European plate and pre-date early exhumation of high-pressure metamorphic units in the Tauern Window, including the Glockner Nappe sensu stricto, the Eclogite Zone and part of the Modereck Nappe System (Fig. 1). However, the age of the high-pressure metamorphism in these units is controversial, with estimates ranging from 42–38 Ma (40Ar/39Ar phengite, Ratschbacher et al., 2004; Kurz et al., 2008) to 36–32 Ma (87Rb/87Sr white mica, Glodny et al., 2005; Lu/Hf in garnet-bearing assemblages, Nagel et al., 2013).

In view of this uncertainty, the best approach to dating the Tauernkristallisation employs isotopic systems with closure temperatures (Tc) higher than or near the peak temperatures recorded in the rocks. Other studies on samples closer to the Brenner Normal Fault yield slightly younger white mica ages in the range of 30–28 Ma which are interpreted as cooling ages following the Tauernkristallisation event (e.g., Lambert, 1970; Selverstone, 1985; Raith et al., 1978; Ratschbacher et al., 2004).

A detailed study of a single, 6-cm diameter synkinematic garnet (Pollington and Baxter, 2010) from a shear zone in the WTD indicates garnet growth at temperatures of at least 500 °C from 28 to 20 Ma, with an increased growth rate at about 25 Ma. According to Selverstone et al. (1991) this shear zone experienced significant mass- (<50%) and volume- (<60%) loss related to fluid flow between 20 and 30 Ma (Barnes et al., 2004). These observations are in agreement with studies on steeply dipping shear zones in the WTD by Schneider et al. (2013).

In the southwestern part of the ETD (Sonnblick Subdome), where the peak-T of 510 °C (Droop, 2013) is about the same as the Tc of the 87Rb/87Sr white mica system, Reddy et al. (1993) interpreted their

Table 2

<table>
<thead>
<tr>
<th>Sample/material</th>
<th>Venediger Nappe System</th>
<th>143Nd/144Nd</th>
<th>±2σ</th>
<th>87Sr/86Sr</th>
<th>±2σ</th>
<th>Sr [ppm]</th>
<th>Sm [ppm]</th>
<th>147Sm/144Nd</th>
<th>εNd (Chur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>155/6/2011 WR</td>
<td>0.702585 ± 0.000004</td>
<td>33.52</td>
<td>7.806</td>
<td>0.1408</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155/6/2011 Ctd</td>
<td>0.702691 ± 0.000004</td>
<td>4.005</td>
<td>1.149</td>
<td>0.1734</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155/6/2011 Grt1</td>
<td>0.702105 ± 0.000002</td>
<td>0.439</td>
<td>0.982</td>
<td>1.3518</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155/6/2011 Grt2</td>
<td>0.702190 ± 0.000009</td>
<td>0.401</td>
<td>1.216</td>
<td>1.8340</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Sample Material</th>
<th>87Sr/86Sr ± 2σ</th>
<th>Rb [ppm]</th>
<th>Sr [ppm]</th>
<th>87Rb/86Sr</th>
<th>Age ± 2σ [Ma]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penninic nappes/Glockner Nappe System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11R32 WR</td>
<td>0.70927 ± 0.000003</td>
<td>322.9</td>
<td>379.2</td>
<td>2.4637</td>
<td>19.5 ± 0.2</td>
</tr>
<tr>
<td>11R32 Bt</td>
<td>0.77877 ± 0.000004</td>
<td>380.3</td>
<td>428.6</td>
<td>258.52</td>
<td>19.5 ± 0.2</td>
</tr>
<tr>
<td>11R46 WR</td>
<td>0.706317 ± 0.000004</td>
<td>25.3</td>
<td>359.5</td>
<td>0.2034</td>
<td>17.7 ± 0.2</td>
</tr>
<tr>
<td>11R46 Bt</td>
<td>0.743767 ± 0.000004</td>
<td>204.6</td>
<td>3.797</td>
<td>149.36</td>
<td>19.4 ± 0.2</td>
</tr>
<tr>
<td>11R29 WR</td>
<td>0.705304 ± 0.000004</td>
<td>47.7</td>
<td>138.4</td>
<td>0.6668</td>
<td>17.5 ± 0.2</td>
</tr>
<tr>
<td>11R29 Bt</td>
<td>0.749119 ± 0.000003</td>
<td>234.7</td>
<td>3.855</td>
<td>176.92</td>
<td>17.5 ± 0.2</td>
</tr>
</tbody>
</table>

* Data included also in Scharf et al. (submitted for publication Tectonophysics).
ages between 30 and 24 Ma either as formation ages during the Tauernkrystalisation or as cooling ages shortly thereafter. In the larger Hochalm Subdome where peak-T exceeded 550 °C, the two new 87Rb/87Sr white mica ages in this study (Table 1, Fig. 2) as well as the previously published ages of Cliff et al. (1985; Fig. 2) are consistently younger (24–21 Ma). These are therefore interpreted as cooling ages after the peak of Tauernkrystalisation. Note that the 87Rb/87Sr white mica ages in this study are more variable than the biotite ages from the same samples (04R64, 182-1–2005), a phenomenon also observed in the white mica ages of Cliff et al. (1985). This variability most probably reflects minor and variable amounts of Sr loss during post-peak metamorphic deformation and recrystallisation of the micas.

Other systems applied to minerals of the peak-temperature assemblage in the ETD yield ages in the narrow range of 29–27 Ma (metamorphic crystallisation, Th/Pb and U/Pb allanite, Cliff et al., 1998; formation between 27 and 3 Ma (Staufenberg, 1987; Foeken et al., 2007; Wölfler et al., 2012; Bertrand, 2013), and apatite closure in the ETD yield ages in the narrow range of 29–27 Ma (metamorphic crystallisation, Th/Pb and U/Pb allanite, Cliff et al., 1998). These ages lie within the broad range of the white mica ages cited above.

The 147Sm/144Nd isochron age (25.7 ± 0.9 Ma) on garnet-chloritoid-whole rock in this study (Table 2) is interpreted to date the growth of the peak-temperature assemblage after the formation of S4 related to shearing during duplex formation in the Venediger Nappé System. This is seen in Fig. 4, where garnet and chloritoid overgrow a folded S4 foliation defined by fine trails of white mica. The 25.7 Ma age supports the ages of the other high-temperature systems and pre-dates the cooling ages in the ETD.

To summarize this section, the available isotopic ages indicate that the Barrow-type thermal event in the Tauern Window lasted for about 7 Ma, beginning no later than 32 Ma (oldest 87Rb/87Sr white micas) and lasting until about 25 Ma as indicated by the 147Sm/144Nd garnet formation ages from the WTD and ETD and the younger 87Rb/87Sr ages on white micas. This suggests that crustal thickening during Adria–Europe collision started before 32 Ma. This fits well with geological evidence for thickening of continental crust as manifested by the transition from an underfilled trench with predominantly flysch in Eocene time, to Molasse-type sedimentation in the Alpine continental foredeep beginning in latest Eocene to early Oligocene time (see Kurz et al., 2008; Handy et al., 2010, 2015; Schmid et al., 2013).

6.2. Cooling of the Eastern Tauern Dome

All new 87Rb/87Sr biotite ages are from samples that experienced peak metamorphic temperatures of 500 °C or more, well above the Tc of the 87Rb/87Sr system in biotite (300 °C, Jäger et al., 1967; Del Mora et al., 1982), so these ages are clearly interpretable as cooling ages. Regarded together with existing isotopic ages in the literature, these ages define three distinct cooling domains in the study area, each with its own T–t cooling curve (color coded in Fig. 5a, b). It is noticeable that boundaries between these cooling domains generally trend northeast–southwest, obliquely to the major D4 nappe contacts and D5 domes, as well as to the 500 and 550 °C peak-T contours that outline the core of the ETD. In particular, the boundary between cooling domains 1 and 2 cuts across the Mallnitz Synform, while that between domains 2 and 3 overprints the D5 sheared contact between the Hochalm Subdome and Sonnblick Lamellae (Fig. 5a). The curves themselves record cooling from 500° to about 240 °C and the age of this cooling is seen to become progressively younger going from the northwest (domain 1) to the southeast (domain 3) towards the footwall of the Katschberg Normal Fault (Fig. 5b). Judging from the average slopes of the T–t curves in Fig. 5b, the average cooling rate was about 33 °C Ma−1 in all domains. Constraints from lower temperature systems are sparse: zircon fission track ages show cooling of the ETD to below 240 °C between 19 and 11 Ma (Yamada et al., 1995; Dunkl et al., 2003; Wölfier et al., 2008, 2012; Bertrand, 2013), and apatite fission track ages to below –125 °C between 27 and 3 Ma (Staufenberg, 1987; Foeken et al., 2007; Wölfier et al., 2008, 2012; Bertrand, 2013). Cooling in this low-temperature domain to below the viscous-frictional transition in quartz-bearing rocks (~300 °C, Stipp et al., 2002) is very poorly constrained (Scharf et al., 2013a) and sample locations are too widely spaced to resolve significant late differential cooling under subgreenschist-facies conditions within the ETD.

Deriving exhumation and exhumation rates from cooling ages is difficult in the absence of thermal modeling, which only exists for the western part of the Tauern Window (Fügenschuh et al., 1997). Without such models, a number of simplifying assumptions must be made, for example, that the average heat flow and geothermal gradient did not change significantly with time and that both heat production and heat capacity of the rocks were uniform in the exhuming nappe pile. Although none of these assumptions are well constrained, they are probably realistic in light of the fact that most samples are metagranitoids with similar rock-physical properties, including heat capacity and heat production by decay of radiogenic K, Th and U. In addition, thermal modeling of exhuming basement rocks in the WTD has shown that exhumation preceded the onset of rapid cooling by only about 2 Ma (Fügenschuh et al., 1997). The time lag between the onset of rapid exhumation and rapid cooling was probably even less in the ETD, where cooling rates (~3 °C Ma−1) were somewhat lower than in the WTD (~45 °C Ma−1), giving the exhuming rocks more time to equilibrate with the ambient thermal state of the crust.

The trend of progressively younger cooling from NW to SE in the ETD is therefore interpreted to reflect the migration of D5 exhumation during broadly coeval post-nappe doming and top-SE orogen-parallel shearing along the southeastwardly propagating KNF (Scharf et al., 2013a). The peak pressure experienced by these units during the Tauernkrystalisation was 800–1000 MPa (Droop, 1985; Gipper, 2012; Hawemann, 2013), consistent with 25–30 km of exhumation for an average crustal density of 2.8 g/cm³. Doming probably started between 30 and 25 Ma in both the Sonnblink Subdome and NW part of the Hochalm Subdome (domain 1), then began to affect the rest of the Hochalm Subdome and the Sonnblink Lamellae in the SE at 25–23 Ma (domain 2) before reaching the present-day core of the Hochalm Subdome and footwall of the KNF from 23 to 17 Ma (domain 3, Fig. 6). The 23 Ma age for the onset of this doming in domain 3 coincides exactly with the estimated age for the beginning of top-SE mylonitic shearing in the footwall of the KNF (Scharf et al., 2013a).

The obliquity of the cooling domain boundaries and the concentric peak-temperature contours in the ETD (inset to Fig. 5, see Scharf et al., 2013b; Cliff et al., 1985) indicates that these contours are not isochrons but are about 4–5 Ma older in the northwestern than in the southeastern part of the ETD. The diachronous nature of the peak-temperature contours can also be inferred on an even larger scale from cross-cutting relationships of peak-temperature contours and major D4 and D5 structures in the Tauern Window as a whole (Fig. 1): In the central part of the Window where somewhat lower peak temperatures (~500–550 °C) and oldest mica cooling ages are recorded (Luth and Willingshofer, 2008), the contours follow the broadly arcuate shape of the D5 fold axes around the Tauern Window (Figs. 1, 4 of Schmid et al., 2013) and clearly cut all D4 nappe contacts. There, the peak temperatures appear to have been attained during D5. In the cores of the ETD and WTD, the concentric shape of the peak-temperature contours clearly reflects later D5 doming. At both ends of the Tauern Window these contours are modified by the Brenner and Katschberg Normal Faults, as already noted by several authors (Fügenschuh et al., 1997; Frisch et al., 2000; Luth and Willingshofer, 2008; Scharf et al., 2013b).

Taken together, these patterns suggest that doming in the central part of the Tauern Window occurred during the attainment of peak temperatures during the Tauernkrystalisation whereas at the ends of the Tauern Window, doming and orogen-parallel shearing clearly occurred after this thermal peak event. This map-scale pattern of orogen-parallel migration of doming and exhumation is revisited in the next section, where the exhumation pattern implied by this migration is considered
as a response to changing geometric boundary conditions during indentation and fragmentation of the Adriatic indenter.

We conclude this section by noting that the cooling pattern in Fig. 5 precludes earlier hypotheses reviewed in the Introduction in which the Sonnblick Subdome cooled from 500° to 300 °C before the Hochalm Subdome (Reddy et al., 1993; Cliff et al., 1985). This would imply significant vertical displacements along the intervening Mallnitz Synform, which is inconsistent with the observed subhorizontal stretching lineations and sinistral shear sense in D5 mylonites striking parallel to this synform (Scharf et al., 2013a).

Fig. 6 shows how the evolving pattern of cooling of orogenic crust in the Tauern Window can be related to progressive indentation and fragmentation of the Austroalpine units along the front of the Adriatic indenter. Specifically, we propose that the migration of rapid cooling of the ETD from 500 to 300 °C reflects the migration of doming and extensional exhumation in response to exhumation and fragmentation of the Austroalpine units into the two triangular blocks, the Rieserferner and Drau–Möll blocks (Fig. 1) along the front of the Adriatic indenter (e.g., Cliff et al., 1985; Hoke, 1990; Reddy et al., 1993; Inger and Cliff, 1994; Scharf et al., 2013a). This evolution is traced schematically in Fig. 6.

The initial configuration of the Austroalpine units proposed in Fig. 6a was obtained by retrodeforming the Rieserferner and Drau–Möll blocks along the sinistral Zwischenbergen–Wöllatratten (ZWT) Fault, bringing them into their positions prior to the main stage of indentation. The ZWF accommodated about 20 km of sinistral displacement in map view according to offset of the late
Oligocene Defereggen–Antholz–Vals and Ragga–Teuchl Faults (DAV and RT in Fig. 1). These are interpreted to have originally been one through-going sinistral fault that was active during intrusion of the late Oligocene Periadriatic intrusives (age criteria in Müller et al., 2000; Mancktelow et al., 2001; Romer and Siegesmung, 2003; Wagner et al., 2006), prior to Miocene indentation (Scharf et al., 2013a and references therein). Other lithological markers are similarly offset along the ZWF (Linner et al., 2013). We note that both the Rieserferner and Drau–Möll blocks contain a number of shorter faults with smaller displacements (≤ a few km, Schuster et al., 2015), some of which offset (e.g., Iseltal Fault; Fig. 1) and even reactivate (RT, e.g. Wölfler et al., 2015) the larger, aforementioned faults. These smaller faults are interpreted to have allowed the Austroalpine blocks to deform compatibly during indentation, as discussed below.

The occurrence of deeper Periadriatic intrusives and younger Rb–Sr mica cooling ages in the Rieserferner Block (intrusive depths of 10 km, Rensen and Rieserferner plutons, Stockhert et al., 1999; Borsi et al., 1973, 1978) than in the Drau–Möll Block (e.g., Rosenberg, 2004 and references therein) suggests that the former block was exhumed from greater depths than the latter. In addition, zircon fission track ages of 30–40 Ma (Wölfler et al., 2008, 2015) in the northern parts of the Rieserfernen and Drau–Möll blocks indicate that temperatures close to 240 °C prevailed during the Oligocene, whereas Mesozoic sediments in the southern parts of the block near the Periadriatic Fault reached only anchizonal to diagentic conditions (Rantitsch, 2001; Schuster et al., 2004). The Austroalpine blocks at the time of indentation were therefore cooler and stronger than the hot and weak Paleogene nappe stack in the Tauern Window (Genser et al., 1996; Linzer et al., 2002; Scharf et al., 2013a). Together, the restored Rieserferner and Drau–Möll blocks formed a large triangular zone along the leading edge of the Southern Alpine crust, as depicted in Fig. 6a. In addition, the entire Eastern Alpine orogenic edifice was restored about 50 km to the east, equivalent to the dextral displacement at that location due to eastward lateral escape accommodated by the Periadriatic Fault since late Oligocene time (30 Ma; Pomella et al., 2011, 2012). It is noted that this estimate is consistent with the overall trend of eastwardly increasing, post-20 Ma dextral displacement along the Periadriatic Fault; the displacement ranges from 0 km at its junction with the Meran–Mauls and Giudicarie Belt at the apex of the Southern Alpine indenter, to a maximum of about 260 km along the Mid-Hungarian Fault Zone (Fig. 1a; Handy et al., 2015). This along-strike displacement gradient is consistent with the idea that the Neogene Periadriatic Fault east of the Giudicarie Belt was a crustal stretching fault (Means, 1989) that accommodated lateral eastward escape of the far-traveled Austroalpine nappes (dark gray units in Fig. 1a, Fodor et al., 1998; Horvath et al., 2006).

Fig. 6. Schematic maps (left column) and cross sections (right column) showing progressive fragmentation of indenting Austroalpine blocks and related migration of doming during exhumation of the ETD (see text for explanation). Colors marking the cooling domains previously shown in Fig. 5. Age intervals above the cross section for stage 3 indicate NW to SE passage of the 300 °C isotherm through the ETD according to ⁸⁷Rb/⁸⁷Sr biotite ages in the literature (see references in Appendix A). Abbreviations: BNF — Brenner Normal Fault, ETD — Eastern Tauern Dome, GB — Giudicarie Belt, Hochalm Subdome, KNF — Katschberg Normal Fault, MF — Mölltal Fault, MM — Meran–Mauls Fault, PF — Periadriatic Fault, Sonnblick Subdome, SEMP — Salzach–Ennstal–Mariazell–Puchberg Fault, WTD — Western Tauern Dome, ZWF — Zwischenbergen–Wölflatratten Fault. Big yellow arrows indicate motion of the Adriatic indentor with respect to stable Europe. Active faults in orange (strike-slip with arrows and normal faults in red with ticks), inactive faults in black.
Analogue modeling of indentation has shown that triangular zones of little or no deformation ("dead zones") form in front of rigid indenters between kinematic singularities at the corner or corners of the indenters (e.g., Tapponnier et al., 1986; Ratschbacher et al., 1991a; Rosenberg et al., 2007). At low strains, such dead zones are thus protected from the high differential stresses that would favor failure. However, with progressive indentation, these zones are eventually dissected by strike-slip faults and the zones fragment into smaller blocks.

In the case of the Eastern Alps, we propose that the Austroalpine crust immediately south of the Tauern Window formed such a dead zone in front of the Adriatic indenter, which is represented by the Southern Alps east of the Giudicarie Belt (Fig. 1). The southeastern corner of this indenter, at the junction of the sinistral Giudicarie Belt and the dextral Periadriatic Fault (Figs. 1, 6a), was the site of a kinematic singularity. Both of these faults were active throughout late Oligocene/Miocene time and delimited the indenter from the orogenic crust to the north (e.g., Müller, 1998; Müller et al., 2001; Läufer et al., 1997; Pomella et al., 2011, 2012; Handy et al., 2005).

The Periadriatic Fault decoupled the triangular dead zone of Austroalpine crust from this indenter and facilitated eastward lateral escape of Eastern Alps, including the exhuming Cenozoic orogenic crust in the Tauern Window (Frisch et al., 1998; Linzer et al., 2002). It is important to note that this dead zone was not entirely immune to Alpine deformation and heating, as its leading edge experienced penetrative Paleogene Alpine deformation and temperature of \(\geq 300 \) °C (age maps of Schuster et al., 2004; fabric map of Scharf et al., 2013a, their Fig. 8). Furthermore, as northward Adriatic indentation progressed, this zone was dissected by conjugate strike-slip faults that lead to the individuation of the semi-rigid Rieserferner and Drau–Möll blocks (Fig. 6b; Scharf et al., 2013a, their Fig. 8). The strike-slip faults bounding these blocks allowed the blocks to extend subparallel to the orogen, thus accommodating some of the northward Adriatic indentation (Frisch et al., 1998; Linzer et al., 2002).

It is proposed that the northward motion and eastward displacement of the Rieserferner and Drau–Möll blocks induced the migration of doming and KF-related extensional exhumation in the Tauern Window away from, and to the east of, the indenter front as recorded by the cooling age pattern in this study. A key to understanding this scenario is that the tip of the Drau–Möll Block coincides approximately with the boundary between cooling domains 1 and 2 of the ETD (Fig. 5a). Shortening in front of the Drau–Möll Block was greatest in the vicinity of this tip, i.e. in the Sonnblick Subdome (Fig. 6b), where the ages in this study indicate that rapid cooling of the ETD initiated as early as 30–25 Ma. Continued indentation by the Drau–Möll Block accommodated by dextral and sinistral motions of the conjugate MF and ZWF, respectively, effected further shortening of the ETD in the Hochalmm Dome and extensional exhumation in the footwall of the KF beginning no later than 23 Ma (Scharf et al., 2013a). Final indentation of the Drau–Möll Block induced eastward extrusion and rollback of the KF relative to the tip of this block, such that exhumation migrated laterally into what then became cooling domain 3 of the ETD. Rapid cooling ended at 17 Ma according to fission track cooling ages (Fig. 6c, see discussion in Scharf et al., 2013a).

Northward indentation of the Southern Alps is also documented along the Giudicarie Belt along the western edge of the Southern Alps indenter (Pomella et al., 2011; 2012): Initial sinistral transpressive motion along this belt and the transpressive Meran–Mauls Fault resulted in incipient bending of the Periadriatic Fault beginning in late Oligocene time. This incipient indentation did not trigger much exhumation of the Tauern Window, but appears to have induced late Oligocene sinistral shearing in the core of the WTD (Schneider et al., 2013) as well as the aforementioned early exhumation of the eastern ETD at 30–25 Ma (Reddy et al., 1993; this study). However, most of the approximately 77 km of sinistral displacement along the Giudicarie Belt occurred in Miocene time (23–7 Ma, Scharf et al., 2013a; Schmid et al., 2013; Handy et al., 2015; Schneider et al., submitted for publication) and triggered rapid exhumation and cooling of the WTD (Fügenschuh et al., 1997).

7. Conclusions

The cooling pattern in the Tauern Window is related to the fragmentation of an initially triangular zone of little or no ductile deformation comprising mostly Austroalpine units in front of the Adriatic indenter (Fig. 6). With progressive indentation, this zone was subdivided into two, semi-rigid crustal blocks (Rieserferner and Drau–Möll blocks) along the leading edge of this indenter. Miocene doming, exhumation and cooling of the eastern part of the Tauern Window (ETD in Fig. 1) occurred directly in front of the Drau–Möll Block. A new \(^{148}\)Sm/\(^{146}\)Nd isochron age of 25.7 ± 0.9 Ma on garnet that overgrows the main foliation in the ETD (Fig. 3) marks the age of Barrow-type, amphibolite-facies metamorphism (Tauernkrystallisation) in the eastern part of the Tauern Window. This metamorphism overlapped with the onset of doming and orogen-parallel extensional shearing. The new \(^{87}\)Rb/\(^{86}\)Sr white mica and biotite ages presented in this paper point to broadly coeval cooling of the Sonnblick and Hochalm subdomains within the ETD (Fig. 2) to below 500 and 300 °C at about 30–21 and 23–15 Ma, respectively (Fig. 5). The cooling ages of these mica systems decrease from the center of the Tauern Window towards the KF, reaching 24–21 Ma (\(^{87}\)Rb/\(^{86}\)Sr white mica) and 18–15 Ma (\(^{87}\)Rb/\(^{86}\)Sr biotite) in the KF footwall (Fig. 5). Taken together, the new and existing thermochronological data show that the ETD was folded and exhumed as a single unit; doming migrated perpendicular to the indentation direction and parallel to motion of the eastward rolling footwall of the KF during lateral orogenic escape.

The relative age of doming and Tauernkrystallisation differs within the Tauern Window: in the center they are broadly coeval, whereas towards the eastern and western margins, doming was coeval with orogen-parallel extensional shearing and clearly post-dated the Tauernkrystallisation. This change in the relative age of doming and peak-thermal metamorphism reflects the migration of tectonic and erosional unroofing from the center to the ends of the Tauern Window during lateral orogenic escape in latest Oligocene and Miocene time.

Regarded on the scale of the orogen, the anomalous indentation and exhumation patterns in front of the Adriatic indenter appear to have formed during a Neogene switch in subduction polarity, from south-directed European subduction to north-directed Adriatic subduction beneath the Eastern Alps (Lippitsch et al., 2003; Schmid et al., 2004; Handy et al., 2015). This polarity switch drove cold wedges of Austroalpine crust, which had previously formed the upper plate of the European subduction, into the warm and weak orogenic edifice of previously accreted European crust.

Acknowledgments

Special thanks go to our Berlin colleagues, Audrey Bertrand, Susanne Schneider, Stefan Schmid (now in Zürich) and Claudio Rosenberg (now in Paris), as well as Manfred Rockenschaub and Manfred Linner from the Geological Survey of Austria for many helpful discussions. We also thank Stanislaw Grabala from the Geological Survey of Austria for the mechanical preparation of the samples and Monika Horschinegg from the Department of Lithospheric Research, Vienna, Austria, for her help with the isotopic analyses. This study was supported partly by the German Science Foundation (0424021104, DFG-project Ha 2403/10) in the form of the European Research Council-Starting Grant (ERC-2013-StG 336408) to the first author, and partly by the unemployment fund of the German government. We greatly acknowledge the critical and helpful reviews of M. Calderon and anonymous reviewer. Finally, we appreciated the friendly assistance of Kathrin Aichorn and her team at the BIOS Center, Nationalpark Hohe Tauern in Austria in obtaining permission to work in protected wildlife areas.
Table 1A
Authors list, sample names, ages and Tc values used for the cooling pattern in Fig. 5.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sonnblick Subdome West (Core)</th>
<th>Sonnblick Subdome Center (Mallnitz)</th>
<th>Sonnblick Subdome East (Lamellae)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ages/err</td>
<td>Sample Nr Author</td>
<td>Ages/err</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb/Sr Wm 550 ± 50 °C Purdy and Jäger, 1976 Von Blanckenburg et al. 1989</td>
<td>26.9 ± 0.5</td>
<td>323/87 Reddy et al., 1993</td>
<td>27.1 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>28.3 ± 0.8</td>
<td>86/87 Reddy et al., 1993</td>
<td>23.9 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>26.9 ± 0.4</td>
<td>84/88 Reddy et al., 1993</td>
<td>25.5 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>262 ± 0.4</td>
<td>87/88 Reddy et al., 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.0 ± 1.1</td>
<td>79/88 Reddy et al., 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>258 ± 0.5</td>
<td>46/86 Reddy et al., 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>347 ± 0.5</td>
<td>83/88 Reddy et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>28.1 ± 0.5</td>
<td>25.7 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>350 ± 40 °C Ar/Ar Hbl Harrison (1981) 147Sm/144Nd Grt formation</td>
<td>27.5 ± 1.0</td>
<td>3056 Lambert, 1970</td>
<td>21.0 ± 0.5</td>
</tr>
<tr>
<td>420 °C K/Ar Wm Robbins (1972)</td>
<td>27.5 ± 1.0</td>
<td>3056 Lambert, 1970</td>
<td>21.0 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>21.7 ± 0.1</td>
<td>86/87 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>205 ± 0.2</td>
<td>80/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>224 ± 0.2</td>
<td>41/86 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>229 ± 0.3</td>
<td>40/86 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>21.1 ± 0.2</td>
<td>84/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>203 ± 0.1</td>
<td>87/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>211 ± 0.1</td>
<td>81/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>223 ± 0.2</td>
<td>32/87 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>202 ± 0.1</td>
<td>79/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>208 ± 0.1</td>
<td>46/86 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>21.5 ± 0.1</td>
<td>28/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>21.3 ± 0.1</td>
<td>83/88 Reddy et al., 1993</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>26.7 Exc. Ar</td>
<td>Lambert, 1970 not used</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td>Mean</td>
<td>21.2 ± 0.1</td>
<td>20.2 ± 0.2</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td>FTZ 240 ± 20 °C 2sigma Yamada et al., 1995</td>
<td>21.5 ± 1.4</td>
<td>115 Dunkl et al., 2003</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>180 ± 1.6</td>
<td>116 Dunkl et al., 2003</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>175 ± 2.0</td>
<td>164 Dunkl et al., 2003</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>17.5 ± 1.6</td>
<td>126 Dunkl et al., 2003</td>
<td>17.3 ± 0.2</td>
</tr>
<tr>
<td>Mean</td>
<td>18.8 ± 1.6</td>
<td>TW51 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td>ZHE 2sigma 190 ± 10 °C Wolf et al., 1996</td>
<td>15.4 ± 2.8</td>
<td>TW111 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.6 ± 3.4</td>
<td>TW111 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.1 ± 1.2</td>
<td>TW110 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.1 ± 0.2</td>
<td>TW44 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.8 ± 0.4</td>
<td>TW108 Wöllfer et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>18.3 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Hochalm Subdome West (Gastein)</td>
<td>Hochalm Subdome Center (Mallnitz)</td>
<td>Hochalm Subdome East (Core)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Ages/err Sample Nr Author</td>
<td>Ages/err Sample Nr Author</td>
<td>Ages/err Sample Nr Author</td>
</tr>
<tr>
<td>Rb/Sr Wm</td>
<td>550 ± 50 °C Purdy and Jäger, 1976 Von Blanckenburg et al. 1989</td>
<td>52.4 ± 0.4 53961 Inger and Cliff, 1994</td>
<td>21.8 ± 0.5 G2038 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>28.3 ± 1.4 53940 Inger and Cliff, 1994</td>
<td>22.6 ± 0.6 G3500 Cliff et al., 1985</td>
<td>21.1 ± 0.2 04R64 this study</td>
</tr>
<tr>
<td></td>
<td>32.0 ± 1.0 53941 Inger and Cliff, 1994</td>
<td>27.0 ± 2.0 M504 Cliff et al., 1985</td>
<td>23.1 ± 0.6 H3000 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>24.7 ± 0.4 53942 Inger and Cliff, 1994</td>
<td>20.5 ± 1.2 M1486 Cliff et al., 1985</td>
<td>22.0 ± 0.6 H1000 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>28.3 ± 1.4 53943 Inger and Cliff, 1994</td>
<td>22.0 ± 2.0 M2085 Cliff et al., 1985</td>
<td>22.3 ± 0.8 54037 Inger and Cliff, 1994</td>
</tr>
<tr>
<td></td>
<td>22.6 ± 0.8 53944 Inger and Cliff, 1994</td>
<td>22.0 ± 2.0 M2085 Cliff et al., 1985</td>
<td>22.3 ± 0.8 54037 Inger and Cliff, 1994</td>
</tr>
<tr>
<td></td>
<td>31.0 ± 2.0 53945 Inger and Cliff, 1994</td>
<td>22.0 ± 2.0 M2085 Cliff et al., 1985</td>
<td>22.3 ± 0.8 54037 Inger and Cliff, 1994</td>
</tr>
<tr>
<td></td>
<td>23.3 ± 1.2 53946 Inger and Cliff, 1994</td>
<td>22.0 ± 2.0 M2085 Cliff et al., 1985</td>
<td>22.3 ± 0.8 54037 Inger and Cliff, 1994</td>
</tr>
<tr>
<td></td>
<td>25.0 ± 1.7 53947 Inger and Cliff, 1994</td>
<td>22.0 ± 2.0 M2085 Cliff et al., 1985</td>
<td>22.3 ± 0.8 54037 Inger and Cliff, 1994</td>
</tr>
<tr>
<td>Mean</td>
<td>27.0 ± 1.0</td>
<td>22.3 ± 0.9</td>
<td>22.7 ± 0.5</td>
</tr>
<tr>
<td>530 ± 40 °C Ar/Ar Hbl</td>
<td>Harrison (1981) 147Sm/144Nd Grt formation</td>
<td>25.7 ± 0.9 155/6/2011 this study Sm/Nd Grt</td>
<td>25.7 ± 0.9 24.0 ± 1.0</td>
</tr>
<tr>
<td>420 °C K/Ar Wm</td>
<td>Robbins (1972)</td>
<td>20.6 ± 0.2 SF08-11 this study</td>
<td>20.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>21.5 ± 0.5 SF035 Oxburgh et al., 1966</td>
<td>20.5 ± 0.2</td>
<td>19.9 ± 0.5</td>
</tr>
<tr>
<td>Mean</td>
<td>20.6 ± 0.7</td>
<td>19.9 ± 0.5</td>
<td>22.4 ± 0.7</td>
</tr>
<tr>
<td>Rb/Sr Bt</td>
<td>320 ± 40 °C K/Ar Bt 320 ± 40 °C Harrison et al. (1985) Del Moro et al. (1982) Jäger et al. (1967)</td>
<td>20.6 ± 0.2 21.5 ± 0.5 SF035 Oxburgh et al., 1966</td>
<td>20.6 ± 0.2 11R34 this study</td>
</tr>
<tr>
<td></td>
<td>20.5 ± 0.2 21.5 ± 0.5 SF08-11 this study</td>
<td>19.0 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>19.0 ± 0.2 20.9 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>17.7 ± 0.2 17.7 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>19.0 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>19.0 ± 0.2 19.0 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>18.2 ± 0.2 18.2 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>17.7 ± 0.2 17.7 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>19.0 ± 0.2 19.0 ± 0.2 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>18.0 ± 1.0 18.0 ± 1.0 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td></td>
<td>19.5 ± 0.5 19.5 ± 0.5 SF035 Oxburgh et al., 1966</td>
<td>17.7 ± 0.2 11R34 this study</td>
<td>16.5 ± 0.2 G2085 Cliff et al., 1985</td>
</tr>
<tr>
<td>Mean</td>
<td>20.9 ± 0.3</td>
<td>18.8 ± 0.2</td>
<td>16.8 ± 0.3</td>
</tr>
<tr>
<td>ZHE 2sigma</td>
<td>190 ± 10 °C CWolf et al., 1996</td>
<td>13.0 ± 4.2 Bertrand, 2013</td>
<td>17.5 ± 1.4 KR-8 Dunkl et al., 2003</td>
</tr>
<tr>
<td></td>
<td>18.4 ± 3.0 18.4 ± 3.0 128 Dunkl et al., 2003</td>
<td>17.5 ± 1.4 128 Dunkl et al., 2003</td>
<td>17.5 ± 1.4 128 Dunkl et al., 2003</td>
</tr>
<tr>
<td>Mean</td>
<td>18.4 ± 3.0</td>
<td>18.0 ± 2.2</td>
<td>15.2 ± 2.0</td>
</tr>
</tbody>
</table>
References

Fig. 1A. Sample map. Samples listed in Table 1 of the Appendix A.

S. Favaro et al. / Tectonophysics 665 (2015) 1–16
S. Favaro et al. / Tectonophysics 665 (2015) 1–16

