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Abstract A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and
extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic
microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to
the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by
using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal
shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence
between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined
with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to
have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe
since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening
estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to
crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation
related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia).
Neogene motion of Adria resulted from a combination of Africa pushing from the south, the
Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted
as a pivot and stopped farther northwestward motion of Adria relative to Europe.

1. Introduction

The Adriatic microplate (Adria) is a key player in the geodynamics of the western Mediterranean because of
its location between two major plates, Europe and Africa (Figure 1), that have been converging since at least
Late Cretaceous time (e.g., Dewey et al., 1989; Handy et al., 2010; Stampfli & Borel, 2002). Its boundaries
are highly deformed and include the Alps, Apennines, Dinarides, Hellenides, and the Calabrian Arc. The
Alps-Apennines and Alps-Dinarides junctions are marked by switches in subduction polarity, with Adria being
the upper plate in the Alps and the lower plate in the Apennines and Dinarides (Figure 1; e.g., Carminati &
Doglioni, 2012; Handy et al., 2010; Handy, Ustaszewski, et al., 2015). The Apennines have been the site of
Oligo-Miocene rollback subduction, “soft” collision and pronounced back-arc (upper plate) extension leading
to the opening of the Tyrrhenian and Liguro-Provençal Basins (Figure 1; e.g., Faccenna et al., 2003; Gueguen,
Doglioni, & Fernandez, 1997; Jolivet & Faccenna, 2000; Molli, 2008; Patacca et al., 1990; Royden & Burchfiel,
1989; Seranne, 1999; Stampfli & Borel, 2002).

Reconstructing the motion of Adria remains a challenge, partly not only because most of it has been sub-
ducted (e.g., Handy et al., 2010) but also because its eastern and western margins were very deformable
(e.g., Moretti & Royden, 1988), making it difficult to choose stable reference points for motion studies.
Adria is often considered to be a promontory of Africa and thus to have moved with Africa (e.g., Channell
et al., 1979; Channell & Horváth, 1976; Dewey et al., 1989; Gaina et al., 2013; Mazzoli & Helman, 1994;
Muttoni et al., 2013; Rosenbaum et al., 2004), although independent motion of Adria with respect to both
Europa and Africa has been deemed necessary to explain the complex kinematics of orogenesis and basin
formation in the Adriatic region (Biju-Duval et al., 1977; Dercourt et al., 1986). The three-plate hypothesis
has been confirmed by recent studies based on restoring shortening in the Alps, indicating that Adria’s
motion was intermittently independent of Africa since the onset of Adria-Europe convergence in Late
Cretaceous time (Handy et al., 20102015; Handy, Ustaszewski, et al., 2015). Reconstructions of the Aegean
region also indicate that Adria likely moved some 40 km relative to Africa in the Pliocene (van Hinsbergen

LE BRETON ET AL. POST-20 MA MOTION OF THE ADRIATIC PLATE 1

PUBLICATIONS
Tectonics

RESEARCH ARTICLE
10.1002/2016TC004443

Key Points:
• Adria has rotated 5 ± 3°
counterclockwise and translated
113 km to the NW (azimuth 325°)
relative to Europe since 20 Ma

• Adria motion was associated with
110 km convergence relative to
Moesia, 125 km in Eastern Alps, and
60 km of extension in Sicily Channel

• Differences between amounts of
shortening and plate convergence
suggest crust-mantle decoupling at
active Adria-Europe boundaries

Supporting Information:
• Supporting Information S1
• Movie S1

Correspondence to:
E. Le Breton,
eline.lebreton@fu-berlin.de

Citation:
Le Breton, E., Handy, M. R., Molli, G., &
Ustaszewski, K. (2017). Post-20 Ma
motion of the Adriatic plate: New
constraints from surrounding Orogens
and implications for crust-mantle
decoupling. Tectonics, 36. https://doi.
org/10.1002/2016TC004443

Received 15 DEC 2016
Accepted 14 NOV 2017
Accepted article online 29 NOV 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0003-0577-9853
http://orcid.org/0000-0001-5923-9751
http://orcid.org/0000-0001-9488-8132
http://orcid.org/0000-0002-1642-5842
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9194
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
http://dx.doi.org/10.1002/2016TC004443
mailto:eline.lebreton@fu-berlin.de
https://doi.org/10.1002/2016TC004443
https://doi.org/10.1002/2016TC004443


& Schmid, 2012). While there is consensus that Adria’s motion involved counterclockwise (CCW) rotation with
respect to Europe, the amount of rotation remains controversial. This pertains even to the Neogene part of
the history during collision in the Alps, Apennines, and Dinarides. Estimates of post-Paleogene CCW rotation
range from a few degrees to as much as 20° depending on the authors and approach used (paleomagnetics,
e.g., Márton et al., 2010; van Hinsbergen, Mensink, et al., 2014, and references therein; palinspastic reconstruc-
tions, Handy et al., 2010; Handy, Ustaszewski, et al., 2015; Ustaszewski et al., 2008). The rotation pole today is
generally placed within the arc of the Western Alps and the western Po Basin as indicated by seismic moment
(Anderson & Jackson, 1987) and GPS velocity studies (Bennett et al., 2012; Calais et al., 2002; Vrabec & Fodor,
2006). All of these studies assume that Adria moved as a single block, though some seismic and geodetic
investigations suggest that it may have fragmented into two blocks that are currently rotating with respect
to each other, as well as relative to Europe and Africa (D’Agostino et al., 2008; Oldow et al., 2002; Sani
et al., 2016; Scisciani & Calamita, 2009).

This paper presents a new motion path for the Adriatic microplate since early Neogene time (≤ 20 Ma). This
period saw major changes in the interaction of plates in the western and central Mediterranean and is there-
fore key to understanding the forces that drove plate motion (slab-pull, slab-suction, and Africa-push; e.g.,
Faccenna et al., 2004; Handy et al., 2010; Carminati & Doglioni, 2012; Viti et al., 2016) and ultimately formed
the mountains and basins surrounding Adria. After reviewing the Apennines, Alps, and Dinarides (section 2),
and comparing existing models of Adriatic motion (section 3), we compile new estimates of crustal shorten-
ing, continental subduction and extension along transects surrounding Adria (A-A0-A″, B-B0, C-C0, and D-D0 in

Figure 1. Tectonic map of western Mediterranean with main Cenozoic structures and geological-geophysical transects in this study. Tectonic structures compiled
from Seranne (1999), Handy et al. (2010), Handy, Ustaszewski, et al. (2015), Civile et al. (2010), Frizon de Lamotte et al. (2011), and Polonia et al. (2011). Background
topographic-bathymetric map from ETOPO1 model (Amante & Eakins, 2009). Dashed black line in the Ionian Sea is the 4,000 m depth isobath delimiting the
abyssal plain to the south (Gallais et al., 2011). Abbreviations: Ad: Adige Embayment; Ap: Apulia; CS: Corsica-Sardinia; Ga: Gargano; IS: Ionian Sea; Ist: Istria; LP:
Liguro-Provençal Basin; MAR: Mid-Adriatic Ridge; ME: Malta Escarpment; PB: Pannonian Basin; SCRZ: Sicily Channel Rift Zone; SPNF: Shkoder-Peja Normal Fault;
TS: Tyrrhenian Sea. Map projection is Transverse Mercator (central meridian 10°E, latitude of origin 43°N).
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Figure 1, section 4). The information is then synthesized to provide a best fit model of Adriatic motion that
reconciles data from all neighboring orogens and basins (section 5). Finally, the motion path is used to draw
inferences about the forces that drive the Adriatic plate (section 6).

2. Geological Setting

The western Mediterranean area is a highly mobile tectonic systemmarked by arcuate plate boundaries with
highly noncylindrical orogens and back-arc basins (Figure 1). Adria played a central role in the geodynamics
of this region because of its location between two former oceans: the mid-Jurassic-Early Cretaceous Alpine
Tethys (e.g., Schmid et al., 2004; Stampfli & Borel, 2002; Vissers et al., 2013) and the northern branch of
Neotethys (e.g., Ricou, 1994; Schmid et al., 2008). Today, the Adriatic microplate comprises mostly continental
lithosphere (1,300 km in a NW-SE direction, 250 km NE-SW, and 80 km thick; Munzarová et al., 2013). It is sur-
rounded by orogens (Figure 1), from the Alps in the north where Adria is the upper plate and indents the
Alpine orogenic edifice (e.g., Schmid et al., 2004), to the Apennines and the Dinarides where Adria forms
the compliant lower plate descending to the west and east, respectively (e.g., Moretti & Royden, 1988). The
Alps are characterized by filled to overfilled foreland basins (Molasse, Po), wholesale accretion of the lower
plate including exhumed high-pressure rocks and pronounced topographic relief, whereas the Apennines
and Dinarides tend to have narrow foredeeps, low-grade metamorphism of accreted lower plate units, and
subdued relief (Royden & Burchfiel, 1989; Royden et al., 1987).

Collision in the Apennines involving west directed rollback subduction of Adriatic continental lithosphere
began no earlier than early Oligocene time (Molli, 2008, and references therein) as constrained by the
34–28 Ma age of rifting in the Liguro-Provençal basin (Rupelian; Seranne, 1999; Jolivet et al., 2015) and the
deposition of continental clastics in the Apenninic foredeep (Chattian-Aquitanian Macigno flysch; Argnani
& Ricci Lucchi, 2001; Cerrina Feroni et al., 2002; Cornamusini et al., 2002; Cornamusini, 2004). Prior to collision,
the polarity of subduction of the Alpine Tethys ocean is controversial; some authors favor NW directed
“Apenninic” subduction of Adria already since Late Cretaceous time (e.g., Jolivet & Faccenna, 2000), whereas
others invoke a switch from SE directed “Alpine” subduction of European lithosphere to NW directed
Apenninic subduction of Adriatic lithosphere at about 34 Ma (e.g., Molli, 2008, and references therein; Molli
& Malavieille, 2011, and references therein). However, the polarity of pre-Neogene subduction is not impor-
tant for the purposes of this paper, which focuses on post-20 Ma motion of Adria.

The Apennines continue into the Calabrian Arc, where the lithosphere of the Ionian Sea forming the south-
ernmost part of the Adriatic microplate is actively subducting beneath Europe (Figure 1). Faccenna et al.
(2001) proposed that the Calabrian Arc formed in late Miocene time in response to slab tearing during the
advanced stages of slab rollback, back-arc extension, and opening of the Tyrrhenian Sea. The nature of the
lithosphere beneath the Ionian Abyssal Plain (Figure 1) remains controversial, with oceanic (e.g., de Voogd
et al., 1992; Speranza et al., 2012) or hyperextended continental lithosphere (e.g., Hieke et al., 2003) proposed
so far. However, the length and retreat of the slab under the Calabrian arc and Tyrrhenian Sea suggest that
the downgoing lithosphere connected to the Ionian lithosphere is oceanic. Moreover, numerous geophysical
studies showed that the 330 km wide (Catalano et al., 2001) Ionian Basin has a 7–9 km thick oceanic crust
(Cowie & Kuznir, 2012) of Early Mesozoic age (220–230 Ma; Speranza et al., 2012) covered by more than
5 km of Meso-Cenozoic sediments (Cowie & Kuznir, 2012; de Voogd et al., 1992). We will return to this point
below, as it has implications for whether Adria was a rigid promontory of Africa or an independent plate
during the convergence of Africa and Europe.

The amount of shortening in the Apennines is poorly constrained despite the abundance of seismic data col-
lected over the years. Previous studies estimated shortening by assuming that orogenic shortening during
rollback subduction was compensated entirely by upper plate extension in the Liguro-Provençal basins,
amounting to zero convergence between Adria and Europe (Faccenna et al., 2001). This resulted in estimates
of upper plate extension (and thus also of maximum orogenic shortening) of 240 km and 780 km, respec-
tively, for northern and southern transects of the Apennines (Gulf of Lion to the northern Apennines via
Corsica and Gulf of Lion to Calabria via Sardinia; Faccenna et al., 2001, their Figure 1). Although the shortening
estimate for the southern transect appears to coincide with the length of the slab anomaly extending to the
NW from the Calabrian Arc (e.g., Piromallo & Morelli, 2003), there is no reason to assume a priori that
Apenninic shortening was equal to extension. Moreover, studies suggested that the mantle lithosphere
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subducting beneath the Apennines delaminated from the crust (e.g., Benoit et al., 2011; Channell &
Mareschal, 1989; Chiarabba et al., 2014; Chiarabba et al., 2009; Serri et al., 1993). Delamination (Bird, 1979)
involves peeling off of the lithospheric mantle from the crust and does not necessarily entail an equivalent
amount of crustal shortening as the lithospheric mantle sinks into the asthenosphere.

The Alps contain the sutured remains of Alpine Tethys (e.g., Handy et al., 2010; Schmid et al., 2004; Stampfli
et al., 1998), which opened as an arm of the North Atlantic in two stages, from 170 to 131Ma (Piemont-Liguria
Basin) and 131 to 93 Ma (Valais Basin; Frisch, 1979; Stampfli & Borel, 2002; Schmid et al., 2004). Closure of
Alpine Tethys occurred during NNW convergence of Adria with Europe between 84 Ma and 35 Ma (Handy
et al., 2010). Collision in the Alps involved SE directed subduction of the European margin and was punctu-
ated by detachment of the European slab at 35–30 Ma (Schmid et al., 2004; von Blankenburg & Davies, 1995).
This led to crustal wedging and indentation beginning at about 30Ma and 23–21Ma, respectively, in the wes-
tern and Eastern Alps (Handy, Ustaszewski, et al., 2015, and references therein). The difference in the amount
of Neogene indentation along strike of the Alps is directly related to the rotation of Adria, a point to which we
return below.

The Dinarides are a SW vergent fold-and-thrust belt (Figure 1), most of which formed during Late Jurassic to
early Oligocene time by the progressive closure of the northern branch of Neotethys (Meliata-Maliac-Vardar
ocean) and subsequent collision and deformation of the NE Adriatic margin (e.g., Babić et al., 2002; Pamić
et al., 1998; Schmid et al., 2008; Ustaszewski et al., 2010). The part of the history relevant to this paper began
with detachment of the NE dipping Adriatic slab, triggering calc-alkaline magmatism in the Dinaric nappe
pile in late Eocene-early Miocene time (37–22 Ma; Schefer et al., 2011). From Late Oligocene onward, thrust-
ing and folding propagated to the SW into the foreland (e.g., Roure et al., 2004; Tari, 2002), accompanied by
dextral strike-slip faulting (Kastelić et al., 2008; Picha, 2002). The amount of shortening in the Dinarides is
poorly constrained at present. Neogene upper plate extension in the Dinarides (Matenco & Radivojević,
2012) is minor compared to the amount of upper plate extension in the Pannonian Basin (Ustaszewski
et al., 2008) and Apennines cited above. Extension in the Pannonian Basin occurs in the upper plate of the
zero-convergence Carpathian system (Royden & Burchfiel, 1989) and therefore has little effect on the relative
motion of Adria and Europe studied here. In the next section, we review the main unresolved problems with
existing kinematic models of Adria as a prelude to the new approach used in this study.

3. Existing Reconstructions of Adriatic Plate Motion

The classical approach for reconstructing plate motion is to assume that tectonic plates are rigid, then apply
Euler’s theorem to describe their rotation on an ideally spherical Earth by fittingmagnetic anomalies and frac-
ture zones in oceanic basins, or using paleomagnetic studies on continents (e.g., Le Pichon et al., 1977;
Morgan, 1968). The quality of the magnetic database has improved over recent decades to the point where
the motions of major plates such as Europe and Africa are reasonably well constrained (e.g., Doubrovine &
Tarduno, 2008; Seton et al., 2012). However, this approach is inadequate to reconstruct the motion of
Mediterranean microplates like Adria, whose oceanic portions have been almost entirely subducted
(Figure 1 and section 2) or do not have oceanic anomalies of Miocene age (Ionian Sea; Speranza et al., 2012).

The idea that Adria was a rigid promontory of Africa since at least Jurassic time (e.g., Channell et al., 1979;
Rosenbaum et al., 2004; Speranza et al., 2012) and moved together with Africa since that time (e.g.,
Capitanio & Goes, 2006; Dewey et al., 1989; Gaina et al., 2013) is based primarily on paleomagnetic studies
indicating little or no rotation of Adria with respect to Africa (e.g., Channell, 1996; Channell et al., 1979;
Rosenbaum et al., 2004). However, recent paleomagnetic studies on stable parts of Adria (Adige embayment,
Istria, and Apulia, Figure 1) indicate that Adria may have rotated CCW by asmuch as 20° relative to Africa since
about 20 Ma (Márton, 2003; Márton et al., 2008, 2010, 2011; van Hinsbergen, Mensink, et al., 2014). Also,
recent magnetic studies suggest that the Ionian crust is oceanic (e.g., Speranza et al., 2012) with a continuous
lithospheric mantle between the northern margin of Africa and Italy (e.g., Catalano et al., 2001; Mele, 2001;
Rosenbaum et al., 2004), implying that Adria has been “rigidly” connected with Africa since Triassic time
(age of the oceanic crust, 220–230 Ma; Speranza et al., 2012). However, Neogene SW-NE striking thrusts
and positive inversion structures in the Ionian abyssal plain (Gallais et al., 2011; Polonia et al., 2011; Roure
et al., 2012) are interpreted as reactivated normal and transform faults originally formed at spreading centers
of the Ionian Sea (Gallais et al., 2011). These structures indicate that the crust beneath the Ionian Sea is not
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rigid, but deformable. Moreover, several NW-SE trending rifts opened during Miocene time along the African
Margin in the Sicily Channel Rift Zone (SCRZ, Figure 1; e.g., Civile et al., 2008, 2010). These structures both in
the Ionian Sea and along the African Margin are therefore evidence for possible relative motion of Adria away
from Africa in Neogene time.

Moreover, plate motion models invoking Adria as a rigid promontory of Africa are unable to account
adequately for the opening and closure of Alpine Tethys, as discussed in Handy et al. (2010). For one, the
E-W and N-S dimensions of Alpine Tethys in such models (e.g., Capitanio & Goes, 2006) do not corroborate
available estimates of N-S convergence in the Alps (Handy et al., 2010; Handy, Ustaszewski, et al., 2015;
Schmid et al., 1996). Either the N-S length of Alpine Tethys was smaller than deduced from such models,
and/or the Adriatic microplate moved independently of the African plate (Biju-Duval et al., 1977; Dercourt
et al., 1986) for at least part of the period considered above.

To test the different models of Adria motion with respect to Europe, we use the compilation of finite rotations
of Gaina et al. (2013) for Africa based on a best fit of magnetic anomalies in the Atlantic, and of Seton et al.
(2012), using paleomagnetic studies of Speranza et al. (2002) for the Corsica-Sardinia block that best fit the
amount and timing of spreading in the Liguro-Provençal Basin (see also section 4.2). We also tested
the model of Handy, Ustaszewski, et al. (2015) that accounts for shortening in the Alps and proposes
independent motion of Adria relative to Africa. All plate reconstructions and rotation calculations in this
paper are performed with GPlates software (Boyden et al., 2011). Independent motion of Adria is supported
by present-day GPS velocities (e.g., D’Agostino et al., 2008) and by the aforementioned extension along
the African Margin—and therefore motion of Adria away from Africa—in Neogene time (SCRZ; Civile et al.,
2008, 2010).

For the past 20 Ma, motion of Adria together with Africa (Figure 2, in green) would necessitate 170 km of NW-
SE directed Neogene convergence in the Western Alps, which far exceeds current estimates of Neogene

Figure 2. Comparison of Adria locations at 20 Ma depending on whether it moved together with Africa (light green) or
independently thereof based on data from the Alps (red; Handy et al., 2010; Handy, Ustaszewski, et al., 2015) relative to
Europe (gray). Finite Euler rotation poles for Africa (dark green) from Gaina et al. (2013) and Corsica-Sardinia (orange) from
Seton et al. (2012). Numbers indicate post-20 Ma overall divergence (+) and convergence (�) in the models. Present-day
location of plates and coastline are shown in black. Map projection in Figure 1.

Tectonics 10.1002/2016TC004443

LE BRETON ET AL. POST-20 MA MOTION OF THE ADRIATIC PLATE 5



shortening in the Western Alps, including the recent estimate of approximately 30–40 km of Schmid et al.
(2017) obtained from areal balancing of lithospheric cross sections. It even exceeds the 113 km convergence
estimate that Handy, Ustaszewski, et al. (2015) obtained by retrodeforming the Alpine nappe stack in map
view, a value that they regarded as an absolute maximum (see also section 4.3). Adria moving together with
Africa also calls for 35 km and 65 km of Neogene overall convergence along NE-SW transects in the northern
Apennines and southern Dinarides-Carpatho-Balkan, respectively, which both seem plausible.

The discrepancy between measured and model-based convergence estimates in the Western Alps can only
be resolved if Adria is assumed to have moved independently of Africa. We note that the model of Handy,
Ustaszewski, et al. (2015) uses Neogene shortening in the Southern Alps to obtain a CCW rotation of Adria
relative to Europe of some 20°, which would require far too much Neogene convergence in the southern
Dinarides-Carpatho-Balkan (350 km, Figure 2, in red) and an implausible 330 km of Neogene extension in
the Ionian Sea and/or African Margin. None of these large estimates are supported by available geological
data. Therefore, data from the other surrounding orogens (Apennines and Dinarides) and basins (western
Mediterranean basins and SCRZ) are needed to better constrain the Neogene motion and amount of CCW
rotation of Adria relative to Europe.

4. New Constraints on Post-20 Ma Adria Motion

To constrain the motion of Adria in Neogene time, we choose four transects along which to estimate conver-
gence and divergence of Adria relative to Europe, Corsica, and Africa (Figure 1 and sections 4.1–4.4): (1)
southern France-Corsica-northern Apennines (Transect A-A0-A″) perpendicular to rifting and spreading of
the Liguro-Provençal Basin, and parallel to the CROP03 seismic profile (Alberti et al., 1998; Barchi et al.,
1998a, 1998b, 2003; Decandia et al., 1998). We choose this transect because upper plate extension is modest
and shortening can be better estimated than in the southern Apennines; (2) Western (Ivrea) and Eastern Alps
(Transect C-C0), where recent restorations are available (Handy et al., 20102015; Handy, Ustaszewski, et al.,
2015; Schmid et al., 2017); (3) southern Dinarides-Carpatho-Balkan (Transect B-B0), where seismic tomography
(UU-P07 model from Amaru, 2007; Hall & Spakman, 2015) and industrial active-source seismic data (Bega,
2013, 2015) are available to estimate the amount of subducted lithosphere since Oligocene-early Miocene
slab breakoff and Miocene crustal shortening, respectively, and where Miocene Pannonian extension is mod-
est (Matenco & Radivojević, 2012); (4) Africa-southern Italy (Transect D-D0), perpendicular to the Pantelleria
Rift, the main rift of the SCRZ.

It is important to note that estimates of crustal shortening along these transects only correspond to conver-
gence of the Adriatic and European plates if the crust and lithospheric mantle moved coherently during
orogeny. Plate convergence is defined here as the decrease in distance between points on undeformed parts
of the upper and lower plates of the orogen. Where mantle delamination, intracrustal decoupling, or tectonic
erosion have occurred, the amount of crustal shortening recorded by folding and thrusting will be less than
the amount of plate convergence. As discussed below, these processes all occurred, sometimes together, so
that most shortening values below provide minimum estimates of Adria-Europe convergence. Irrespective of
the processes at active margins, shortening estimates in fold-and-thrust belts are almost always minima due
to erosion of the hanging wall tiplines of thrusts and/or footwall cutoffs.

4.1. Extension Versus Shortening in the Northern Apennines (Transect A-A0-A″)

In the Apennines, contemporaneous Neogene shortening and upper plate extension were estimated sepa-
rately to arrive at an overall amount of deformation parallel to A-A0-A″. The amount of upper plate extension
was estimated by constructing a crustal-scale profile along transect A-A0-A″ from a recent map of Moho depth
(Spada et al., 2013, their Figure 11), and from topography and bathymetry (global model ETOPO1 of Amante
& Eakins, 2009). This involved first removing the 55 km length of oceanic lithosphere (spreading) in the
central part of the Liguro-Provençal Basin (Jolivet et al., 2015) from transect A-A0 and 100 km length at the
NE end of transect A0-A″, where Adria is the downgoing plate (Figure 3a). The profile was then restored to
an assumed preextensional crustal thickness of 30 km, as preserved beneath southern France (Figure 3b).
However, the crust beneath Corsica and Italy was orogenically thickened prior to the onset of upper plate
extension (Faccenna et al., 2001; Jolivet et al., 1998), as evidenced by Eocene high-pressure metamorphism
exhumed in the footwalls of Alpine thrusts reactivated as Miocene normal faults on Alpine Corsica (e.g.,
Martin et al., 2011, and references therein) and in some Tuscan units of the northern Apennines (Massa
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unit and along-strike equivalents; e.g., Theye et al., 1997; Molli et al., 2000; Bianco et al., 2015). We have
therefore assumed an orogenically thickened crust of 40 km (Figure 3b), in agreement with the present
Moho depth in the central Apennines (Spada et al., 2013), where the orogenic crust is not deepened by
downward pull of the Adriatic slab.

This results in a total of 223 ± 30 km of upper plate extension along transect A-A0-A″ (Figure 3), which can be
divided into 61 ± 16 km of rifting from 34 to 21 Ma (age of synrift sediments; Seranne, 1999; Jolivet et al.,
2015), 55 km of seafloor spreading from 21 to 16 Ma (age of postrift sediments and CCW rotation of the
Corsica-Sardinia block; Seranne, 1999; Jolivet et al., 2015; Speranza et al., 2002; Seton et al., 2012) in the
Liguro-Provençal Basin, and 107 ± 14 km of extension in the Tyrrhenian Sea from 16 to 0 Ma (age of synrift
sediments; Jolivet et al., 2015; Seranne, 1999). The large uncertainties reflect the large variation in Moho
depths along the section (Spada et al., 2013, their Figure 11). Note that if the initial thickness of crust beneath
Corsica and Italy was assumed to be only 30 km, the amount of extension in the Tyrrhenian Sea (A0-A″) would
be only 51 ± 18 km instead of 107 ± 14 km. This would in turn yield an average of 77 ± 44 km extension.
However, we favor the 107 ± 14 km value which is based on the estimates of orogenic crustal thickness
beneath Corsica and Tuscany prior to extension, as explained above. Moreover, our total estimate of
223 ± 30 km Oligo-Miocene extension is in good agreement with the 240 km of total extension that
Faccenna et al. (2001) obtained for the same transect and time period.

Shortening is difficult to estimate in the northern Apennines due to contractional reactivation of preorogenic
normal faults as thrusts (e.g., Tavarnelli et al., 2001) and to subsequent extensional reactivation of these
thrusts during rollback subduction (e.g., Brogi & Liotta, 2006). This makes tectonostratigraphic markers unre-
liable for estimating thrust displacement. Early attempts to estimate shortening in the Umbria-Marche belt of
the northern Apennines assumed a thin-skinned thrusting with detachment at the sediment-basement inter-
face, yielding up to 100 km of shortening (Bally et al., 1986; Calamita et al., 1990; Calamita & Deiana, 1988;
Lavecchia et al., 1987). However, more recent studies using active-source seismic data from the CROP-03 pro-
file invoked a thick-skinned thrusting involving the basement and multiple detachment levels, resulting in
conservative shortening estimates ranging from 30 to 60 km (average 45 ± 15 km) (Alberti et al., 1998;
Barchi et al., 1998b; Butler et al., 2006; Coward et al., 1999; Mazzoli et al., 2005; Tavarnelli et al., 2004).

Figure 3. (a) Transect A-A0-A″with Moho depth from Spada et al. (2013), topography/bathymetry from ETOPO1model (Amante & Eakins, 2009), and width of oceanic
crust (55 km, 21–16 Ma) in Liguro-Provençal Basin from Jolivet et al. (2015). Location of transect in Figure 1. (b) Transect A-A0-A″ after areal balancing of the
crust shows total extension in Liguro-Provençal and Tyrrhenian Sea. Note that the crust under southern France was restored back to normal thickness (30 km),
whereas under Corsica and Italy the crust was restored to an orogenic thickness of 40 km (see text).
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Shortening in the Umbria-Marche belt initiated in Burdigalian time (circa 20 Ma, Barchi et al., 1998b) as
constrained by the age of synorogenic foredeep sediments (Marnoso Arenacea Formation). Older foredeep
sediments of Oligo-Miocene age (circa 34–20 Ma, Macigno Formation) are preserved in Tuscany in the
western “Tyrrhenian” segment of the CROP03 transect, where all orogenic structures are overprinted by
upper plate extension (Barchi et al., 1998a; Brogi & Liotta, 2006; Decandia et al., 1998). However, pre-20 Ma
sediments and structures are not directly relevant for the post-20 Ma aforementioned shortening estimates.

To summarize, 107 ± 14 km of post-20Ma upper plate extension exceeded an average of 45 ± 15 km of coeval
orogenic shortening, resulting in a possible overall divergence of about 62 ± 29 km along transect A0-A″
(Figure 4). However, shortening estimates can underestimate plate convergence considerably. Moreover, if
we perform the same calculation with the whole range of possible values for both shortening (30–100 km)
and extension (77 ± 44 km) along transect A0-A″, we end up with an overall divergence of 10.5 ± 80.5 km, with
an uncertainty higher than the mean value. In light of this poor constraint, independent estimates of short-
ening and extension are needed from the other surrounding orogens and basins.

4.2. Neogene Convergence in the Southern Dinarides-Carpatho-Balkan (Transect B-B0)

The external part of the Dinarides accommodated only minor Mio-Pliocene shortening (≤ 20 km) according to
reflection seismic profiles interpreted from offshore and onshore industry data in southern Montenegro and
northern Albania (Bega, 2013, 2015). Miocene and younger shortening across the orogenic front increases to
some 80–100 km as one moves to the southeast into the Tirana foredeep basin of central Albania (Schmid
et al., 2014). This along-strike change in shortening has been attributed to a SE increase in the contribution
of Hellenic rollback subduction (Handy et al., 2014; Handy, Fügenschuh, et al., 2015); the Neogene compo-
nent of this rollback subduction was accommodated by a combination of post-middle Miocene CCW block
rotation and orogen-parallel extension limited to southeast of the Shkoder-Peja Normal Fault (SPNF,
Figure 1), as documented by paleomagnetic studies (Kissel et al., 1995) and structural work (Handy et al.,
2014; Handy, Fügenschuh, et al., 2015). Thus, for the purposes of this paper, we only regard Neogene short-
ening north of the SPNF, where effects of Hellenic rollback subduction are negligible.

Neogene opening of the Pannonian Basin in the upper plate of the neighboring Carpathian orogen involved
no convergence between Adria and Europe (Royden & Burchfiel, 1989) and therefore had little, if any, effect
on our estimates of Adria-Europe convergence in the southern Dinarides-Carpatho-Balkan. Moreover, our

Figure 4. Tectonic map of the western Mediterranean showing post-20 Ma extension along transect A-A0-A″ in red
(Figure 3) and post-20 Ma shortening in the northern Apennines along the CROP03 profile, parallel to transect A0-A″, in
green (location in Figure 1). Map projection shown in Figure 1.
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transect B-B0 crosses south of the Pannonian Basin where Neogene extension amounts to less than 10 km
based on the geometry of Mio-Pliocene rift basins in the seismic interpretation of Matenco and Radivojević
(2012, their Figure 4).

Out-of-sequence thrusting in the internal Dinarides (e.g., Ustaszewski et al., 2008) and strike-slip faulting east
of the Sava Suture (Timok Fault, Fügenschuh & Schmid, 2005) also occurred along this transect, the latter
during the Neogene northward motion of the Dacia Unit around the Moesian promontory of Europe and
escape into the Pannonian embayment behind the eastwardly retreating Carpatho-Balkan orogen. The lack
of reliable markers precludes quantifying the effect of strike-slip faulting, but given the range of rotations of
the Tisza and Dacia units (16–38° clockwise, Ustaszewski et al., 2008, and references therein), the overall
Adria-Europe (Moesia) convergence was significantly more, perhaps on the order of a 100 km, than
Neogene shortening in the external Dinarides.

An absolute maximum on the amount of Adria-Europe (Moesia) convergence along our transect B-B0 is given
by the length (140 km) of a positive P wave velocity anomaly imaged in seismic tomography (model UU-P07
of Amaru, 2007; Hall & Spakman, 2015; Figure 5). This can be interpreted as the Adriatic slab dipping beneath
the Dinarides; unfortunately, the age, the detachment depth, or the exact location of the slab with respect to
the surface geology are not known. Slab break off in the Dinarides occurred between about 37 and 22 Ma as
inferred from the distribution of calc-alkaline magmatism (Schefer et al., 2011). In light of the minor

Figure 5. P wave tomography (model UU-P07 from Amaru, 2007 and Hall & Spakman, 2015) along transect B-B0 through
the southern Dinarides-Carpatho-Balkan (location in Figures 1 and 6) showing a positive anomaly (blue) interpreted as
subducted Adriatic lithosphere. Abbreviation: LAB, Lithosphere Asthenosphere Boundary.
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Mio-Pliocene crustal shortening in the external Dinarides, most of this truncated slab length probably
accrued during Paleogene Adria-Europe convergence, for which there is abundant geological evidence in
the Dinarides (e.g., Schmid et al., 2008).

4.3. Western (Ivrea) and Eastern Alps (Transect C-C0)

Adria-Europe convergence in the Western Alps is difficult to ascertain because shortening varies around the
arc of the Western Alps and partly preceded arcuation (Collombet et al., 2002; Schmid et al., 2017). At the SW
end of the arc in the Ligurian Alps, the arcuation was accentuated by eastward rollback subduction of the
northern Apennines and counterclockwise rotation of the Corsica-Sardina block (Vignaroli et al., 2008). We
considered the approaches of Handy, Ustaszewski, et al. (2015) and Schmid et al. (2017) which entail different
assumptions and yield different amounts of Neogene convergence (113 km) and shortening (30–40 km) esti-
mates, respectively. Adria-Europe convergence in the Western Alps is defined here as displacement of the
city of Ivrea (in the Ivrea Zone) on an undeformed part of Adria relative to a point on stable Europe in the
Alpine foreland (the Schwarzwald of southern Germany). Handy, Ustaszewski, et al. (2015) retrodeformed
the Alpine thrusts inmap view using previously published estimates of shortening (their Figure A1) andmain-
taining compatibility around the arc by avoiding overlaps in thrusts during stepwise restoration. Their 113 km
of post-20 Ma, Adria-Europe convergence along an azimuth of 325° is a maximum estimate because restoring
thrust displacements orthogonally to differently oriented thrust tip lines within the arc leads to a space pro-
blem. The authors solved this by translating Adria by an amount greater than the shortening measured along
individual cross sections around the arc. Recently, Schmid et al. (2017) obtained a shortening estimate of
about 30–40 km from areally balanced lithospheric cross sections around the arc. However, this estimate
must be regarded as a minimum for Neogene Adria-Europe convergence due to erosion of thrusts tip lines
and cutoffs, as well as possible tectonic erosion within the orogen. We also note that any obliquity of the con-
vergence vector to the trend of the thrust belts around the western Alpine arc would result in shortening
estimates less than the overall Europe-Adria convergence (Lacassin, 1987). The 30 and 113 km estimates
therefore very broadly bracket the actual amount of Neogene Adria-Europe convergence in theWestern Alps.

In the eastern Alps, post-20 Ma shortening along transect C-C0 amounts to a minimum of 115 km, comprising
65 km (Linzer et al., 2002) and 50 km (Schönborn, 1999), respectively, north and south of the Periadriatic fault.
However, shortening along this transect probably does not represent the entire amount of Adria-Europe con-
vergence, some of which was accommodated by eastward, orogen-parallel extrusion of orogenic crust in the
Tauern Window (e.g., Favaro et al., 2017; Scharf et al., 2013). Approximately 150 km of continental subduction
can be deduced from the length of the +Vp slab anomaly imaged beneath the eastern Alps (Handy,
Ustaszewski, et al., 2015, their Figure B3) though this is only a crude estimate due to the highly variable,
drop-like shape of this slab in the tomographic images of Lippitsch et al. (2003). We consider this 150 km
amount of subduction as an absolute upper limit on the amount of Adria-Europe Neogene convergence;
therefore, post-20 Ma Adria-Europe convergence along transect C-C0 ranges from 115 to 150 km.

4.4. Sicily Channel Rift Zone (Transect D-D0)

The continental margin between Africa and Sicily was stretched by a series of NW-SE trending rifts that devel-
oped along the Sicily Channel Rift Zone (SCRZ, Figure 1) during Neogene time (e.g. Argnani, 1990; Civile et al.,
2008, 2010; Corti et al., 2006; Jongsma et al., 1987). This area shows evidence for both extension in the SCRZ
(100 kmwide) and dextral transtension along the Malta Escarpment (Figure 1; 3 km vertical relief over 200 km
length; Jongsma et al., 1987; Doglioni et al., 2001). The reason(s) for this extension are unclear; it may have
accommodated shortening in the Maghrebian chain, rollback of the Calabrian slab (Argnani, 1990) or be
related to a change in the rheology of the northern African continental lithosphere (Civile et al., 2010).
Here we propose that this extension accommodated the divergence between Adria and Africa during the
post-20 Ma CCW rotation of Adria. The overall amount of extension is still poorly constrained. A crustal profile
perpendicular to the main rift of the SCRZ (Pantelleria Rift, south of Sicily) and parallel to our transect D-D0

(Figure 1) was published by Civile et al. (2008, their Figure 9) based on their interpretation of the CROP seismic
line M-25. The amount of NE-SW extension obtained from balancing this section for an initial thickness of
25 km (present-day thickness on both side of the rift) is about 30 km. Taking into account the other rifts along
the SCRZ and the transtensional deformation along the Malta Escarpment, we consider this 30 km of exten-
sion to represent the minimum amount of Neogene divergence of Africa and Adria (D-D0).
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5. Post-20 Ma Motion and Rotation of Adria Relative to Europe

Combining amounts of extension, shortening, and subduction obtained above from the orogens and basins
surrounding Adria (section 4 and Table 1) allows us to place tighter constraints on Adria-Europe and
Adria-Africa motion. To describe the rotation of Adria, we choose an axis at the aforementioned city of
Ivrea (Handy, Ustaszewski, et al., 2015) due to its location at the northwesternmost stable part of Adria
(Figure 1) and its general coincidence with the Miocene-to-recent rotation axis for Adria proposed in previous
geodetic and geophysical studies (e.g., D’Agostino et al., 2008; Ustaszewski et al., 2008; Vrabec & Fodor, 2006).
However, we emphasize that the Ivrea rotation axis is not the finite Euler rotation pole for Adria as a whole
because Ivrea has undergone translation relative to Europe since 20 Ma together with Adria; therefore, the
finite rotation pole for Adria is a combination of both the motion of Ivrea/Adria and the rotation of Adria
about the Ivrea axis (Figure 6).

We test two plate motion scenarios utilizing either (1) the 113 km of Adria-Europe convergence in theWestern
Alps discussed above (Handy, Ustaszewski, et al., 2015) or (2) a smaller amount of 60 km (closer to the
minimum shortening estimate of Schmid et al., 2017). For both scenarios, we run a series of tests that account
for different amounts of rotation, from 4° clockwise to 20° counterclockwise (Figure 6 and the supporting
information). For each such test, we calculate the amounts of Adria-Europe divergence/convergence along
transects A-A0-A″, B-B0, C-C0, and D-D0 and compare them with data in section 4 in order to obtain a best fit
model for post-20 Ma Adria motion (Table 1 and the supporting information).

The post-20 Ma motion of Adria relative to Europe along transect A-A0-A″ is divided into two components: (1)
the motion of Corsica relative to Europe (transect A-A0) and (2) the motion of Adria relative to Corsica (trans-
ect A0-A″). As mentioned in section 4.1, 55 km of seafloor spreading occurred between 21 and 16 Ma
(Gattacceca et al., 2007; Jolivet et al., 2015; Seranne, 1999; Speranza et al., 2002) in the Liguro-Provençal basin
along transect A-A0 (Figure 3). This necessitates a CCW rotation of the Corsica-Sardinia block relative to
Europe as already demonstrated in paleomagnetic studies (e.g., Gattacceca et al., 2007; Speranza et al.,
2002). For a constant spreading rate of 11 km/Ma, Corsica moved about 44 km away from Europe between
20 and 16 Ma along transect A-A0. This is identical within error to the 40 km of Corsica-Sardinia motion
predicted along the same transect by Seton et al. (2012); Euler pole and rotation angle from Speranza et al.
(2002; Figure 4). A more recent model for the Corsica-Sardinia block (Advokaat et al., 2014, based on
Gattacceca et al., 2007, for Neogene time) predicts less than 20 km of post-20 Ma displacement of Corsica
along transect A-A0. We believe this underestimates the actual amount of spreading (approximately 40 km

Table 1
Compilation of Crustal Shortening, Extension, and Adria-Europe Divergence and Convergence Along Transects A-A0-A″, B-B0, C-C0 , and D-D0 (Location in Figure 1) Used to
Constrain Post-20 Ma Adria Rotation Relative to Europe (R1 and R2 refers to Figure 6)

Dataset used to determine amount
of post-20 Ma Adria rotation

Rotation (R2) for Model 1: 113 km
convergence in Western Alps (R1)

Rotation (R2) for Model 2: 60 km
convergence in Western Alps (R1)

Liguro-Provençal Basin (A-A0) 40 km spreading Maximum 7.75 ± 11.75°
(from 4° CW to 19.5° CCW)

Maximum 7.25 ± 11.75°
(from 4.5° CW to 19° CCW)Tyrrhenian Sea-Tuscany (A0-A″) 107 ± 14 km extension assuming 40 km

initial thickness
51 ± 18 km extension assuming 30 km

initial thickness
= 33–121 km divergence

Northern Apennines (A0-A″) 30–60 km shortening assuming thick skinned
100 km assuming thin skinned

= Minimum 30–100 km convergence

Southern Dinarides-Carpatho-
Balkan (B-B0)

20 km crustal shortening Minimum 0.6° CCW; maximum
7° CCW

Minimum 0.3° CCW; maximum
8° CCW140 km slab length

= 20–140 km convergence

Eastern Alps (C-C0) 115–150 km convergence 6.5 ± 3° CCW 14 ± 3° CCW

Sicily Channel (D-D0) Minimum 30 km divergence Minimum 3.5° CCW Minimum 4° CCW

Best fit rotation 5.25° ± 1.75° CCW No possible fit!

Note. A viable fit of those data is only obtained for Model 1 (involving 113 km convergence in western Alps). More details on calculation of rotations are given in
the supporting information.
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according to Jolivet et al., 2015) and therefore use the Seton et al. (2012) plate motion model for the motion
of Corsica-Sardinia.

Post-20 Ma motion of Adria (A″) relative to Corsica (A0) was associated with some 107 ± 14 km of extension in
the Tyrrhenian Sea and Tuscany as shown above and in Figure 4. During the same period, a minimum of
45 ± 15 km shortening was accommodated in the northern Apennines (section 4.1). Assuming that this
shortening represents the minimum convergence, we obtain an overall maximum divergence of 62 ± 29 km
between Adria (A″) and Corsica (A). To accommodate this overall divergence, Adria would have rotated at most
15.5 ± 4° CCW (11 to 19.5° CCW) relative to Europe given 113 km of convergence in the western Alps (Model 1),
or 14.75 ± 4.25° CCW (10.5 to 19° CCW) for only 60 km of convergence in the western Alps (Model 2). Using the
same approach but with the largest uncertainties in our data (77 ± 44 km of extension and 65 ± 35 km short-
ening along A0-A″; section 4.1 and Table 1), the range ofmaximum rotation of Adria relative to Europe increases
to 7.75 ± 11.75° (4° CW to 19.5° CCW, Model 1; 4.5° CW to 19° CCW for Model 2; supporting information).

If the observed Neogene shortening in the southern external Dinarides (approximately 20 km along transect
B-B0; section 4.2 and Table 1) represents the true amount of Adria-Europe (Moesia) convergence, then rota-
tion of Adria was negligible, if at all existent (0.6° CW for Model 1, 0.3° CCW for Model 2; Table 1 and the

Figure 6. Steps for reconstructing post-20 Ma motion path of Adria (yellow) relative to Europe: (1) translate Ivrea to the SE by 113 km (Model 1) or 60 km (Model 2);
(2) test different rotations of Adria (20° CCW to 4° CW) around an axis located at translated Ivrea; and (3) calculate convergence and divergence along transects A0-A″,
B-B0, C-C0, and D-D0 and compare with data set (Table 1). The finite Euler rotation pole (calculated with GPlates) for Adria motion is a combination of Adria
translation (R1) and rotation (R2). Post-20 Mamotion of the Corsica-Sardinia block (blue) from Speranza et al. (2002); in compilation of Seton et al., 2012) and of Africa
(green) from Gaina et al. (2013) are taken into account when calculating deformation along transect A-A0-A″ (blue arrows) and D-D0 (green arrows), respectively.
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supporting information). In contrast, using the 140 km slab anomaly length (Figure 5) as a maximum of
Adria-Europe (Moesia) convergence would yield maximum CCW rotation of Adria of 7° CCW for Model 1
and 8° CCW for Model 2. In the Eastern Alps (transect C-C0), 115–150 km of Adria-Europe convergence corre-
sponds to a CCW rotation of Adria ranging from 6.5 ± 3° (Model 1) to 14 ± 3° (Model 2). A minimum of 30 km
divergence between Adria and Africa across the Sicily Rift Zone (SCRZ, transect D-D0) corresponds to a mini-
mum CCW rotation of Adria of 3.5° for Model 1 and 4° for Model 2. Therefore, no rotation of Adria—as
required for only 20 km of convergence in the southern external Dinarides—would not fit the data in the
eastern Alps and SCRZ. Additional convergence along B-B0 related to strike-slip faulting and northward
motion of Dacia into the Pannonian embayment (section 4.2) therefore fits well with the kinematic
constraints imposed by the other orogens surrounding the Adriatic Plate.

Using 60 km of convergence in the western Alps (Model 2) requires much more CCW rotation of Adria
(14 ± 3°) to fit the data in the Eastern Alps which in turn requires far too much convergence in the southern
Dinarides-Carpatho-Balkan (240 ± 50 km; Figure S9 in the supporting information) and too much divergence
between Adria and Africa (215 ± 55 km; Figure S11 in the supporting information). Therefore, the best fit to all
the available data involves convergence according to Model 1 in the western Alps (113 km; Step 1 in Figure 6)
and CCW rotation of Adria of 5.25 ± 1.75° about the Ivrea axis (Step 2 in Figure 6 and Table 1). The error asso-
ciated with all our reconstructions and measurements amounts to at most 10 km, corresponding to 0.5–1.5°
of rotation, depending on the distance to the rotation pole. Thus, the CCW rotation of Adria that fits all the
available data is 5 ± 3° about the Ivrea axis. The mean value corresponds to a CCW rotation of 5.35° about
a finite Euler rotation pole located in Spain at 38.20°N, 3.16°W.

6. Discussion
6.1. Assessing the Model

The range of CCW Adria rotation of 5 ± 3° is within error of the 9.8 ± 9.5° CCW rotation proposed by van
Hinsbergen, Mensink, et al. (2014) based on their paleomagnetic study of the Apulian peninsula, southern
Italy (Figure 1), but much less than the 20° previously obtained from shortening values in the Southern
Alps (Handy, Ustaszewski, et al., 2015; Ustaszewski et al., 2008). These shortening estimates come from near
the Ivrea rotation axis in the western part of the Southern Alps (Bergamasche Alps, 70 km of Schönborn, 1992)
where some of the shortening attributed to the Neogene may actually be older (e.g., Doglioni & Bosellini,
1987; Fantoni et al., 2004). Certainly, applying 20° of CCW rotation to the entire Adriatic plate can be ruled
out on the grounds that it would require far too much Neogene convergence in the southern Dinarides-
Carpatho-Balkan and Neogene extension in the Ionian Sea (Figure 2).

In a test of different plate scenarios for Adria, van Hinsbergen, Mensink, et al. (2014) concluded that either
Neogene shortening in the western Alps has been underestimated by as much as 150 km or Neogene exten-
sion in the Ionian Basin has been underestimated by as much as 420 km. However, Neogene shortening in
the western Alps certainly does not exceed 113 km of convergence (our Model 1; section 4.3; Handy,
Ustaszewski, et al., 2015), an amount that is much greater than usually proposed for shortening in the western
Alps (approximately 30–40 km; Schmid et al., 2017). If one assumes only 60 km of convergence (our Model 2),
then this would require 14 ± 3° of CCW Adria rotation to fit the data in the eastern Alps, implying too much
convergence in the southern Dinarides-Carpatho-Balkan and too much divergence along the SCRZ (section 5
and Table 1). Obviously, this is strongly dependent on the location of the rotation pole for Adria; here we used
the city of Ivrea for our first reconstruction step (section 5 and Figure 6). The rotation pole may have changed
through time but this was not tested in this study. We recall that using another rotation pole such as that for
Africa relative to Europe (so that Adria would move together with Africa) would require far too much conver-
gence in the Western Alps (170 km, Figure 2).

Our proposed best fit CCW Adria rotation of about 5° relative to Europe calls for about 60 km of post-20 Ma
NE-SW directed extension between Africa and Adria, which is much less than the 420 mentioned by van
Hinsbergen, Mensink, et al. (2014). The actual amount of extension accommodated there is difficult to assess
because most of the Ionian lithosphere was subducted beneath the advancing Calabrian and Hellenic arcs in
Pliocene time (e.g., Faccenna et al., 2003; Gutscher et al., 2016; Malinverno & Ryan, 1986; Royden, 1993); only a
small triangular patch of the Ionian abyssal plain remains unsubducted (Figure 1). Seismic profiles of this
remnant basin indicate Neogene tectonic inversion along NE-SW striking thrust faults rather than
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extensional deformation (Gallais et al., 2011; Polonia et al., 2011; Roure et al., 2012). However, Neogene NE-SW
directed extension along the SCRZ (e.g., Civile et al., 2008) and right-lateral transtension along the Malta
Escarpment (e.g., Doglioni et al., 2001; Jongsma et al., 1987) on the African Margin of the Ionian Sea
(Figures 1 and 7) accommodated the southeastward advance of the Calabrian Arc (e.g., Frizon de Lamotte
et al., 2011; Jongsma et al., 1987; Roure et al., 2012) and most likely the NE-SW divergence of Adria and
Africa (section 4.4 and Figure 7). In sum, evidence of Neogene NW-SE directed extension along the African
margin of the Ionian Sea is compatible with the NE-SW divergence of Adria and Africa as featured in our best
fit model for CCW Adria rotation. More data from the SRCZ are needed to refine this model.

A possible solution to the dilemma above is that the Adriatic plate fragmented, with the northern part rotat-
ing independently of the southern part (D’Agostino et al., 2008; Oldow et al., 2002; Sani et al., 2016). Indeed,
seismic reflection profiling (CROP M15), GPS velocities and diffuse seismicity in the central Adriatic Sea have
been interpreted as evidence for NW-SE striking thrusts and dextral strike-slip faults along the so-called Mid-
Adriatic Ridge or MAR (Figure 1; Scisciani & Calamita, 2009). If we split Adria into two blocks along the MAR
and move the northern block as in our best fit model and the southern block together with Africa, the result-
ing deformation along theMARwould be 50–100 km (eastwardly increasing) of dextral strike slip with a trans-
tensional component (≤ 10 km of extension) to accommodate CCW rotation of the northern block relative to
the southern block. However, the structures imaged along CROP M15 transect are only contractional and/or
transpressive; there is no evidence for transtension or for 50–100 km of dextral strike-slip deformation
(Scisciani & Calamita, 2009). In order to allow simultaneous Neogene CCW rotation of Adria relative to
Europe and independent motion of Adria relative to Africa, the Ionian Sea and/or its adjacent margins must
have accommodated Neogene extension.

6.2. Discrepant Shortening and Convergence as Evidence for Crust-Mantle Decoupling?

The best fit CCWAdria rotation of about 5° relative to Europe entails approximately 8 km of overall Adria-Europe
convergence in the northern Apennines (A-A0-A″), 110 km of across the southern Dinarides-Carpatho-Balkan

Figure 7. Tectonic map of the central Mediterranean region showing location of the Adriamicroplate andmain front thrusts today (black) and at 20Ma (pink, favored
Model 1) relative to Europe. Blue indicates the proposed force vectors driving the motion of Adria (push of Africa from the south, pull of the Adriatic-Hellenic slab to
the northeast) during crustal wedging in the Alps that slowed and ultimately stopped Adria NW motion. Note the Neogene NE-SW directed extension along the
African margin that has accommodated divergence of Adria and Africa. Abbreviations: CS: Corsica-Sardinia; LP: Liguro-Provençal; ME: Malta Escarpment; PR:
Pantelleria Rift; TS: Tyrrhenian Sea. Map projection in Figure 1.
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(B-B″), 113 km of convergence in the western Alps (Ivrea), 125 km of convergence in the eastern Alps (C-C0),
and 60 km of divergence between Africa and Adria (D-D″). Predicted Adria-Europe convergence in the best fit
model exceeds measured shortening in all three orogens surrounding the Adriatic plate. These discrepancies
tell us something about mechanisms of orogeny in the circum-Adriatic mountain belts.

Continental rollback subduction in the northern Apennines involved nearly zero Adria-Europe convergence,
with about 115 km ± 14 km of continental subduction if we use the 107 km ± 14 km of extension obtained by
areal balancing (section 4.1). This would be close to the amount of crustal shortening obtained from the “thin-
skinned” interpretations (approximately 100 km, section 4.1), but far greater than the favored “thick-skinned”
interpretations (30–60 km, section 4.1). We attribute this deficiency of crustal shortening to tectonic erosion
and/or to lithospheric and lower crustal delamination in the Apennines.

Likewise, the discrepancy between observed Miocene crustal shortening and inferred Adria-Europe (Moesia)
convergence along transect B-B0 implies wholesale vertical decoupling. The zone of decoupling is most prob-
ably located between the Dinarides and the Moesia promontory of Europe, where arcuate strike-slip faults
(e.g., Timok Fault of Fügenschuh & Schmid, 2005) accommodated Miocene northward extrusion and clock-
wise rotation of the Dacia part of the Tisza-Dacia Unit (e.g., Ustaszewski et al., 2008).

6.3. Possible Forces Driving Adriatic Motion in Neogene Time

Neogene motion of the Adriatic plate raises the question of its driving forces, indeed, of whether its motion
was at all independent of that of the larger plates. Certainly, pull of the slab beneath the Apennines can be
ruled out as a driving force because the Adriatic plate rotated CCW to the NE, that is, away from the westward
direction of its subduction beneath Europe. Likewise, pull of an Adriatic slab segment beneath the eastern
Alps is probably negligible due to its limited length (≤ 150 km in the eastern Alps, Lippitsch et al., 2003).
So far, P wave tomography shows no evidence of a slab anomaly in the northern Dinarides (Piromallo &
Morelli, 2003; Wortel & Spakman, 2000), precluding a component of slab pull to the NE.

This leaves eastward pull of the Adriatic slab beneath the northwestern Hellenides and/or northward push of
the African plate as the only viable drivers of post-20 Ma Adria motion (Figure 7). P wave tomography has
shown that the Hellenic slab descends through the Mantle Transitional Zone into the lower mantle
(Piromallo & Morelli, 2003; van Hinsbergen et al., 2005). Similar directions (to the NW) and rates (7 mm/yr;
Gaina et al., 2013, for Africa and our best fit model for Adria) of motion of Adria and Africa relative to
Europe during Neogene time indicate that Adria was pushed to the northwest by Africa, as proposed by
Handy et al. (2010) and Handy, Ustaszewski, et al. (2015). However, the northwestward motion of Adria most
likely slowed, if not stopped, as Adria indented and wedged in the Western Alps along the Ivrea Body (Handy
& Zingg, 1991; Schmid et al., 2017; Zingg et al., 1990). Then, pull of the NE dipping slab beneath the north-
western Hellenides, to which the eastern part of the Adriatic plate was (and still is) attached, drove the
CCW rotation of Adria and divergence from Africa, while the Apenninic-Calabrian trench retreated rapidly.
Today, the remaining Adriatic plate is squeezed between Europe and Africa while the latter still pushes to
the north. In response to that push, Adria most likely started to fragment internally, as indicated by the
present-day seismicity and deformation within Adria (D’Agostino et al., 2008; Oldow et al., 2002; Sani et al.,
2016; Scisciani & Calamita, 2009).

In summary, we propose that Adria’s northward motion in Neogene time was driven by Africa’s advance,
while the CCW rotation of Adria resulted from a combination of wedging of its rigid northwestern end in
the western Alps and northeastward pull of the Adriatic slab descending beneath the northwestern
Hellenides. This left Adria’s eastern edge free to swing northeastward, out of the way of Africa.

7. Conclusions

Neogene motion of the Adriatic plate is key to understand how contrasting orogenic styles develop within
the same overall convergent tectonic regime. This study provides a new post-20 Ma motion path for the
Adriatic microplate that fits available geological and geophysical data from the Alps, Apennines, Dinarides,
and Sicily Channel Rift Zone (SCRZ). During the last 20 Ma, upper plate extension (107 ± 14 km) has exceeded
shortening (30–60 km) in the northern Apennines, while Adria subducted beneath the southern Dinarides
(> 20 km) and indented both the western Alps (30–113 km) and eastern Alps (115–150 km). The best fit
for Adria motion is a CCW rotation relative to Europe of 5° about a finite Euler rotation pole located in
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Spain at 38.20°N, 3.16°W. This motion calls for almost no overall Neogene Adria-Europe convergence in the
northern Apennines, 113 km in the Western Alps, 125 km in the Eastern Alps, and 110 km between Adria
and Moesia, mostly across the Carpatho-Balkan orogen. Furthermore, the estimated divergence between
Africa and Adria of 60 km was accommodated by extension along the SRCZ and dextral transtension along
NW-SE striking transform faults (Malta escarpment).

Plate convergence exceeds crustal shortening in all orogens surrounding Adria. We attribute this difference
to tectonic erosion and crust-mantle decoupling of the Adriatic lithosphere, expressed differently in the three
orogens: (1) delamination during rollback in the Apennines, (2) northward motion of the Dacia Unit between
the Dinarides and Europe (Moesia), and (3) eastward lateral extrusion of the Tauern Window in the Eastern
Alps during northward indentation of Adria into Europe.

Themain driving force of Adriamotion was a push from Africa to the northwest until the Adriatic plate slowed
and stopped as it indented Europe in the western Alps. Then the main force was a pull to the east by the slab
beneath the northwestern Hellenides. This triggered a slight CCW rotation of Adria relative to Europe and
divergence from Africa. As Africa still pushes to the north, the Adriatic plate most likely started to fragment
internally as documented by GPS and seismic studies cited above.
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