Auxilary material for Paper 2011TC003087

Variations in amount and direction of sea-floor spreading along the North East Atlantic Ocean and resulting deformation of the continental margin of North West Europe

E. Le Breton¹*, P.R. Cobbold¹, O. Dauteuil1, G. Lewis²

¹Geosciences Rennes, Université de Rennes 1, CNRS, 263 Avenue du Général Leclerc, 35042 Rennes, France

² Chevron Onshore Europe, Seafield House, Hill of Rubislaw, Aberdeen, AB10 6XL, United Kingdom

*Corresponding author, <u>eline.lebreton@univ-rennes1.fr</u>

Tectonics

Introduction

This appendix contains:

- figures of restoration of the opening of the NE Atlantic for 13 stages, from Chron 5 (10.3Ma) to 55.9 Ma for each restoration, for Model 1 and Model 2; we have indicated the criterion of fit (G) for the restorations of both models on each figure;

- table and a graph of the G values for the restorations of both models;

- tables of the best-fit rotation poles and their uncertainties (total misfit, degrees of freedom, quality factor, number of data points and great circle segments, covariance matrices), for each spreading system, for both models.

Map projection is Universal Transverse Mercator (UTM, WGS 1984, zone 27N).

Figure 1: Restoration at Chron 5 - 10.3 Ma - MODEL 1 (G = 0.0017)

Figure 2: Restoration at Chron 5 - 10.3 Ma - MODEL 2 (G = 0.0009)

Figure 3: Restoration at Chron 5A - 14.2 Ma - MODEL 1 (G = 0.0016)

Figure 4: Restoration at Chron 5A - 14.2 Ma - MODEL 2 (G = 0.0007)

Figure 5: Restoration at Chron 6 - 19.6 Ma - MODEL 1 (G = 0.0021)

Figure 6: Restoration at Chron 6 - 19.6 Ma - MODEL 2 (G = 0.0009)

-60°0'0"N

Figure 7: Restoration at Chron 8 - 26.4 Ma - MODEL 1 (G = 0.0018)

Figure 8: Restoration at Chron 8 - 26.4 Ma MODEL 2 (G = 0.0024)

Figure 9: Restoration at Chron 13 - 33.3 Ma - MODEL 1 (G = 0.0023)

Figure 10: Restoration at Chron 13 - 33.3 Ma - MODEL 2 (G = 0.0037)

Figure 11: Restoration at Chron 17 - 36.6 Ma MODEL 1 (G = 0.0026)

Figure 12: Restoration at Chron 17 - 36.6 Ma - MODEL 2 (G = 0.0041)

Figure 13: Restoration at Chron 18 - 39.4 Ma - MODEL 1 (G = 0.0017)

Figure 14: Restoration at Chron 18 - 39.4 Ma - MODEL 2 (G = 0.0040)

Figure 15: Restoration at Chron 20 - 43.2 Ma - MODEL 1 (*G* = 0.0017)

Figure 16: Restoration at Chron 20 - 43.2 Ma - MODEL 2 (G = 0.0050)

Figure 17: Restoration at Chron 21 - 47.1 Ma - MODEL 1 (G = 0.0017)

Figure 18: Restoration at Chron 21 - 47.1 Ma - MODEL 2 (G = 0.0048)

Figure 19: Restoration at Chron 22 - 49.4 Ma - MODEL 1 (G = 0.0028)

Figure 20: Restoration at Chron 22 - 49.4 Ma - MODEL 2 (G = 0.0058)

Figure 21: Restoration at Chron 23 - 51.3 Ma - MODEL 1 (G = 0.0039)

Figure 22: Restoration at Chron 23 - 51.3 Ma - MODEL 2 (G = 0.0050)

Figure 23: Restoration at Chron 24 - 52.9 Ma - MODEL 1 (G = 0.0043)

Figure 24: Restoration at Chron 24 - 52.9 Ma - MODEL 2 (G = 0.0052)

Figure 25: Final Restoration at 55.9 Ma - MODEL 1 (G = 0.0037)

Figure 26: Final Restoration at 55.9 Ma - MODEL 2 (G = 0.0037)

Calculation of criterion G for each restoration stage, for each model

The criterion G represents the fractional area of gaps and overlaps:

$$G = S_{\rm g}/S_{\rm b}$$

where S_g is the total surface area of all gaps and overlaps, and S_b is the total surface area of all the blocks (*Rouby et al.*, 1993). A good approximation to S_g is:

$$S_{\rm g} = L^* (D/n)^{1/2}$$

where *L* is the length of a line element, n is the total number of line elements, and $(D/n)^{1/2}$ is the root-mean-square gap width (*Rouby et al.*, 1993).

	Model	1	Mo	del 2	
	G	it	G	it	
Chron 5 - 10.3 Ma	0.0017	1000	0.0009	1000	
Chron 5A - 14.2 Ma	0.0016	1000	0.0007	1000	
Chron 6 - 19.6 Ma	0.0021	500	0.0009	1000	
Chron 8 - 26.4 Ma	0.0018	200	0.0024	750	
Chron 13 - 33.3 Ma	0.0023	750	0.0037	750	
Chron 17 - 36.6 Ma	0.0026	500	0.0041	500	
Chron 18 - 39.4 Ma	0.0017	500	0.0040	1000	
Chron 20 - 43.2 Ma	0.0017	500	0.0050	600	
Chron 21 - 47.1 Ma	0.0017	500	0.0048	700	
Chron 22 - 49.4 Ma	0.0028	200	0.0058	500	
Chron 23 - 51.3 Ma	0.0039	100	0.0050	250	
Chron 24 - 51.3 Ma	0.0043	10	0.0052	50	
COB - 55.9 Ma	0.0037	10	0.0037	10	
Mean G	0.002	5	0.	0035	
G minimal	0.001	6	0.	0007	
G maximal	0.004	3	0.0058		

it = number of iteration

Finite Rotation of the eastern Reykjanes Segment relative to a stationary Greenland plate (Reykjanes Ridge)

		Po	ole of Rotation		Paran	neters	/Uncerta	inties	Covariance matrix						
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	е	f	
Chron 5	10.3	71.65	136.17	-2.71	0.202	37	183.60	(50,5)	6.90360E-06	-2.34442E-06	1.23087E-05	8.93597E-07	-4.19974E-06	2.24086E-05	
Chron 5A	14.2	73.65	128.08	-3.90	0.289	37	128.00	(50,5)	6.69182E-06	-2.45570E-06	1.21442E-05	1.00014E-06	-4.48139E-06	2.25113E-05	
Chron 6	19.6	76.27	124.52	-5.71	0.202	37	183.60	(50,5)	6.42987E-06	-2.62878E-06	1.19256E-05	1.17637E-06	-4.90825E-06	2.26015E-05	
Chron 8	26.4	71.72	132.23	-6.96	0.397	37	93.21	(50,5)	6.11536E-06	-2.81647E-06	1.16531E-05	1.40164E-06	-5.41070E-06	2.27074E-05	
Chron 13	33.3	68.42	133.40	-7.85	0.500	37	74.06	(50,5)	5.84945E-06	-2.92330E-06	1.14228E-05	1.56788E-06	-5.76157E-06	2.28269E-05	
Chron 17	36.6	65.01	134.75	-8.16	0.631	37	58.61	(50,5)	5.69249E-06	-2.97719E-06	1.12837E-05	1.66542E-06	-5.96037E-06	2.29002E-05	
Chron 18	39.4	58.34	137.60	-8.15	0.708	37	52.27	(50,5)	5.55298E-06	-3.02943E-06	1.11549E-05	1.76216E-06	-6.15119E-06	2.29566E-05	
Chron 20	43.2	59.39	135.98	-9.01	0.860	37	43.07	(50,5)	5.35639E-06	-3.08041E-06	1.09756E-05	1.88349E-06	-6.38489E-06	2.30539E-05	
Chron 21	47.1	45.18	136.16	-8.88	1.071	37	34.55	(50,5)	5.03877E-06	-3.06258E-06	1.06934E-05	1.97511E-06	-6.58550E-06	2.33005E-05	
Chron 22	49.4	46.11	134.91	-9.51	1.338	37	27.65	(50,5)	4.86205E-06	-3.08316E-06	1.05234E-05	2.07127E-06	-6.76670E-06	2.34017E-05	
Chron 23	51.3	43.42	134.32	-9.98	1.691	37	21.88	(50,5)	4.66820E-06	-3.09008E-06	1.03334E-05	2.16412E-06	-6.94313E-06	2.35242E-05	
Chron 24	52.9	40.97	132.75	-10.56	2.188	37	16.91	(50,5)	4.41898E-06	-3.06708E-06	1.00867E-05	-3.06708E-06	-7.11576E-06	2.37100E-05	
COB fit	55.9	33.12	132.41	-11.08	2.906	37	12.73	(50,5)	4.13972E-06	-3.03226E-06	9.79752E-06	2.34679E-06	-7.30847E-06	2.39254E-05	

Finite Rotation of the eastern Mohns Segment relative to a stationary Greenland plate (Mohns Ridge)

		Pc	ole of Rotation		Paran	neters/	/Uncertai	nties	Covariance matrix					
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	e	f
Chron 5	10.3	82.19	83.35	-4.71	0.757	37	48.86	(50,5)	1.13846E-05	9.28870E-07	2.78877E-05	2.01685E-07	2.32923E-06	6.89130E-05
Chron 5A	14.2	78.61	106.84	-5.11	1.214	37	30.48	(50,5)	1.10403E-05	6.78475E-07	2.75064E-05	1.66916E-07	1.74043E-06	6.91472E-05
Chron 6	19.6	78.06	104.94	-6.75	1.934	37	19.13	(50,5)	1.06802E-05	3.40517E-07	2.70920E-05	1.35724E-07	9.05389E-07	6.93536E-05
Chron 8	26.4	72.79	123.40	-6.96	2.856	37	12.96	(50,5)	1.02647E-05	-2.25357E-08	2.65984E-05	1.23976E-07	-2.31012E-08	6.95782E-05
Chron 13	33.3	59.49	134.49	-6.11	3.573	37	10.36	(50,5)	9.73399E-06	-2.31960E-07	2.59661E-05	1.28218E-07	-5.84361E-07	6.99629E-05
Chron 17	36.6	56.59	132.89	-6.47	4.033	37	9.18	(50,5)	9.35852E-06	-3.54206E-07	2.55073E-05	1.35866E-07	-9.33766E-07	7.02450E-05
Chron 18	39.4	47.41	135.90	-6.37	4.609	37	8.03	(50,5)	8.97396E-06	-5.11627E-07	2.50199E-05	1.50831E-07	-1.39713E-06	7.05139E-05
Chron 20	43.2	57.53	126.47	-8.39	5.293	37	6.99	(50,5)	8.44346E-06	-6.92658E-07	2.43309E-05	1.79541E-07	-1.97683E-06	7.09050E-05
Chron 21	47.1	48.36	128.60	-8.26	5.919	37	6.25	(50,5)	7.84366E-06	-8.19679E-07	2.35172E-05	2.07606E-07	-2.44145E-06	7.13668E-05
Chron 22	49.4	55.37	121.72	-10.11	6.414	37	5.77	(50,5)	7.35696E-06	-9.31726E-07	2.28314E-05	2.41171E-07	-2.88545E-06	7.17562E-05
Chron 23	51.3	54.30	121.00	-10.66	6.789	37	5.45	(50,5)	6.98572E-06	-1.01454E-06	2.22858E-05	2.70720E-07	-3.23618E-06	7.20436E-05
Chron 24	52.9	55.07	118.30	-11.71	7.153	37	5.17	(50,5)	6.52936E-06	-1.08135E-06	2.15925E-05	3.03147E-07	-3.58362E-06	7.24139E-05
COB fit	55.9	62.94	109.08	-15.24	7.571	37	4.89	(50,5)	6.01707E-06	-1.18949E-06	2.07759E-05	3.62037E-07	-4.13488E-06	7.28101E-05

Parameters: r, total misfit; K, estimated quality factor; dF, degrees of freedom; N, number of data points; s, number of great circle segments; the unvertainty of fracture zone and magnetic anomaly identification is $\sigma = 5.00$ km; ages are after Cande and Kent (1995) timescale.

Covariance matrix:

b С а d b е f

е С

Finite Rotation of the eastern Aegir Segment relative to a stationary Greenland plate (Kolbeinsey Ridge from present-day to Chron 6; Aegir Ridge and formation of the Jan Mayen microcontinent from Chron 6 to 55.9 Ma)

	-	Po	ole of Rotation		Paran	neters	/Uncertai	nties	Covariance matrix						
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	e	f	
Chron 5	10.3	69.45	130.89	-2.57	0.248	37	149.33	(50,5)	3.35120E-05	-2.57099E-06	6.80240E-05	3.04155E-07	-5.18912E-06	1.38574E-04	
Chron 5A	14.2	66.23	133.28	-3.35	0.431	37	85.81	(50,5)	3.26758E-05	-3.30713E-06	6.72789E-05	4.41502E-07	-6.78447E-06	1.39032E-04	
Chron 6	19.6	63.92	133.63	-4.50	0.732	37	50.57	(50,5)	3.14336E-05	-4.28433E-06	6.61493E-05	6.90794E-07	-8.99812E-06	1.39727E-04	
Chron 8	26.4	74.23	123.88	-7.42	1.134	37	32.64	(50,5)	3.03916E-05	-5.62214E-06	6.51054E-05	1.14885E-06	-1.20369E-05	1.39997E-04	
Chron 13	33.3	72.14	126.48	-8.15	1.354	37	27.32	(50,5)	2.94412E-05	-6.24277E-06	6.41959E-05	1.43294E-06	-1.36110E-05	1.40519E-04	
Chron 17	36.6	-7.60	149.05	-6.25	1.403	37	26.37	(50,5)	2.78213E-05	-5.75421E-06	6.27766E-05	1.29226E-06	-1.29800E-05	1.42263E-04	
Chron 18	39.4	-7.65	147.66	-6.67	1.501	37	24.64	(50,5)	2.70598E-05	-5.94188E-06	6.20355E-05	1.40679E-06	-1.36210E-05	1.42847E-04	
Chron 20	43.2	-36.96	151.87	-12.08	1.608	37	23.02	(50,5)	2.55566E-05	-5.78563E-06	6.05788E-05	1.40698E-06	-1.37178E-05	1.44294E-04	
Chron 21	47.1	-40.63	152.22	-15.12	1.796	37	20.60	(50,5)	2.42245E-05	-6.17182E-06	5.91660E-05	1.66807E-06	-1.50877E-05	1.45259E-04	
Chron 22	49.4	-41.72	151.73	-16.92	1.910	37	19.37	(50,5)	2.31476E-05	-6.43141E-06	5.79872E-05	1.88202E-06	-1.61333E-05	1.46058E-04	
Chron 23	51.3	-32.22	148.87	-13.97	2.012	37	18.39	(50,5)	2.25475E-05	-7.05571E-06	5.72548E-05	2.30611E-06	-1.79447E-05	1.46179E-04	
Chron 24	52.9	-25.96	145.53	-13.31	2.068	37	17.89	(50,5)	2.10777E-05	-7.33247E-06	5.55567E-05	2.65098E-06	-1.93648E-05	1.47273E-04	
COB fit	55.9	-27.84	145.32	-15.10	2.093	37	17.68	(50,5)	1.97342E-05	-7.68793E-06	5.39159E-05	3.09584E-06	-2.10572E-05	1.48204E-04	

Finite Rotation of the eastern Kolbeinsey Segment relative to a stationary Greenland plate (Kolbeinsey Ridge from present-day to Chron 6; Aegir Ridge and formation of the Jan Mayen microcontinent from Chron 6 to 55.9 Ma)

-		P	ole of Rotation		Paran	neters/	Uncerta	inties	Covariance matrix					
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	е	f
Chron 5	10.3	70.83	129.69	-2.68	19.778	117	5.92	(132,6)	3.89111E-06	-1.01950E-06	1.05461E-05	3.59204E-07	-2.81065E-06	2.87972E-05
Chron 5A	14.2	67.43	132.17	-3.48	19.825	117	5.90	(132,6)	3.74889E-06	-1.10396E-06	1.03626E-05	4.18531E-07	-3.10401E-06	2.88676E-05
Chron 6	19.6	65.04	132.68	-4.65	19.877	117	5.89	(132,6)	3.54422E-06	-1.20958E-06	1.00915E-05	5.08446E-07	-3.50432E-06	2.89723E-05
Chron 8	26.4	83.13	69.32	-11.00	19.918	117	5.87	(132,6)	3.37296E-06	-1.27921E-06	9.85280E-06	5.84298E-07	-3.82645E-06	2.90655E-05
Chron 13	33.3	81.71	19.99	-16.65	19.921	117	5.87	(132,6)	3.31102E-06	-1.29598E-06	9.76109E-06	6.07226E-07	-3.93254E-06	2.91070E-05
Chron 17	36.6	81.61	18.77	-17.36	19.310	117	6.06	(132,6)	3.19851E-06	-1.27880E-06	9.45614E-06	6.11210E-07	-3.89717E-06	2.82928E-05
Chron 18	39.4	81.11	13.74	-18.87	19.959	117	5.86	(132,6)	3.26734E-06	-1.31686E-06	9.69578E-06	6.31280E-07	-4.02907E-06	2.91253E-05
Chron 20	43.2	80.70	11.23	-20.26	19.935	117	5.87	(132,6)	3.23202E-06	-1.32432E-06	9.64455E-06	6.43425E-07	-4.07911E-06	2.91493E-05
Chron 21	47.1	80.40	9.80	-21.41	19.250	117	6.08	(132,6)	3.18890E-06	-1.32307E-06	9.57186E-06	6.49318E-07	-4.10454E-06	2.91135E-05
Chron 22	49.4	80.12	8.69	-22.43	19.953	117	5.86	(132,6)	3.16746E-06	-1.33034E-06	9.55147E-06	6.59875E-07	-4.14839E-06	2.91997E-05
Chron 23	51.3	79.99	6.63	-23.33	19.956	117	5.86	(132,6)	3.16730E-06	-1.34514E-06	9.54761E-06	6.72477E-07	-4.19484E-06	2.91864E-05
Chron 24	52.9	80.03	7.03	-23.45	19.961	117	5.86	(132,6)	3.15087E-06	-1.34682E-06	9.52418E-06	6.77101E-07	-4.21210E-06	2.91978E-05
COB fit	55.9	80.03	7.03	-23.45	19.961	117	5.86	(132,6)	3.15087E-06	-1.34682E-06	9.52418E-06	6.77101E-07	-4.21210E-06	2.91978E-05

Parameters: r, total misfit; K, estimated quality factor; dF, degrees of freedom; N, number of data points; s, number of great circle segments; the unvertainty of fracture zone and magnetic anomaly identification is σ = 5.00 km; ages are after Cande and Kent (1995) timescale.

Covariance matrix:

a b c b d e

c e f

Finite Rotation of the eastern Reykjanes Segment relative to a stationary Greenland plate (Reykjanes Ridge)

		P	ole of Rotation		Paran	neters,	/Uncertai	nties	s Covariance matrice						
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	е	f	
Chron 5	10.3	68.32	136.10	-2.54	0.198	37	187.04	(50,5)	6.89438E-06	-2.33052E-06	1.23057E-05	8.85047E-07	-4.17941E-06	2.24287E-05	
Chron 5A	14.2	64.37	136.08	-3.35	0.294	37	126.00	(50,5)	6.68605E-06	-2.44794E-06	1.21413E-05	9.94685E-07	-4.47069E-06	2.25233E-05	
Chron 6	19.6	71.02	131.59	-5.15	0.402	37	92.07	(50,5)	6.42664E-06	-2.62193E-06	1.19244E-05	1.17078E-06	-4.89802E-06	2.26112E-05	
Chron 8	26.4	68.65	133.54	-6.57	0.496	37	74.63	(50,5)	6.10898E-06	-2.79759E-06	1.16526E-05	1.38518E-06	-5.38006E-06	2.27312E-05	
Chron 13	33.3	61.63	135.43	-7.08	0.560	37	66.07	(50,5)	5.83533E-06	-2.88718E-06	1.14192E-05	1.53445E-06	-5.70318E-06	2.28730E-05	
Chron 17	36.6	56.96	135.53	-7.33	0.606	37	61.04	(50,5)	5.66252E-06	-2.92003E-06	1.12715E-05	1.61288E-06	-5.87165E-06	2.29792E-05	
Chron 18	39.4	51.64	136.11	-7.50	0.658	37	56.21	(50,5)	5.51124E-06	-2.94792E-06	1.11385E-05	1.68494E-06	-6.02299E-06	2.30701E-05	
Chron 20	43.2	53.07	135.80	-8.37	0.802	37	46.13	(50,5)	5.32812E-06	-3.02311E-06	1.09643E-05	1.82607E-06	-6.29393E-06	2.31352E-05	
Chron 21	47.1	44.30	136.60	-8.84	1.078	37	34.32	(50,5)	5.04326E-06	-3.06856E-06	1.06968E-05	1.98071E-06	-6.59472E-06	2.32945E-05	
Chron 22	49.4	42.99	135.05	-9.32	1.301	37	28.44	(50,5)	4.85047E-06	-3.06388E-06	1.05174E-05	2.05106E-06	-6.73745E-06	2.34346E-05	
Chron 23	51.3	41.19	134.30	-9.87	1.660	37	22.28	(50,5)	4.65189E-06	-3.07398E-06	1.03218E-05	2.14971E-06	-6.92425E-06	2.35571E-05	
Chron 24	52.9	37.90	133.52	-10.52	2.264	37	16.34	(50,5)	4.39888E-06	-3.07206E-06	1.00647E-05	2.26756E-06	-7.14612E-06	2.37199E-05	
COB fit	55.9	30.92	132.71	-11.04	2.885	37	12.82	(50,5)	4.13289E-06	-3.02589E-06	9.79066E-06	2.34095E-06	-7.30097E-06	2.39345E-05	

Finite Rotation of the eastern Mohns Segment relative to a stationary Greenland plate (Mohns Ridge)

		P	ole of Rotation		Paran	neters/	Uncertai	nties	Covariance matrice					
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	e	f
Chron 5	10.3	81.60	81.76	-4.81	0.770	37	48.05	(50,5)	1.13319E-05	9.23722E-07	2.78340E-05	2.01224E-07	2.32272E-06	6.89691E-05
Chron 5A	14.2	78.91	103.96	-5.29	1.920	37	19.27	(50,5)	1.10280E-05	6.66715E-07	2.74944E-05	1.65562E-07	1.71174E-06	6.91638E-05
Chron 6	19.6	76.53	112.58	-6.25	1.230	37	30.07	(50,5)	1.06675E-05	3.46215E-07	2.70795E-05	1.35891E-07	9.21729E-07	6.93753E-05
Chron 8	26.4	75.05	118.26	-7.64	2.936	37	12.60	(50,5)	1.02656E-05	-6.35145E-08	2.65978E-05	1.24563E-07	-1.31610E-07	6.95665E-05
Chron 13	33.3	69.52	125.16	-7.80	3.751	37	9.86	(50,5)	9.75633E-06	-3.20938E-07	2.59878E-05	1.34121E-07	-8.26643E-07	6.99097E-05
Chron 17	36.6	66.99	125.60	-8.06	4.191	37	8.83	(50,5)	9.43254E-06	-4.43809E-07	2.55921E-05	1.44255E-07	-1.17880E-06	7.01452E-05
Chron 18	39.4	65.72	124.07	-8.78	4.770	37	7.76	(50,5)	9.02739E-06	-6.03673E-07	2.50832E-05	1.63765E-07	-1.65723E-06	7.04334E-05
Chron 20	43.2	64.46	123.42	-9.70	5.497	37	6.73	(50,5)	8.56063E-06	-8.10647E-07	2.44734E-05	2.00309E-07	-2,30501E-06	7.07401E-05
Chron 21	47.1	66.41	116.71	-11.68	6.177	37	5.99	(50,5)	7.95554E-06	-9.78334E-07	2.36615E-05	2.44867E-07	-2.90832E-06	7.11989E-05
Chron 22	49.4	66.68	112.82	-13.05	6.640	37	5.57	(50,5)	7.45547E-06	-1.07252E-06	2.29623E-05	2.79622E-07	-3.31023E-06	7.15963E-05
Chron 23	51.3	64.28	114.66	-13.19	7.021	37	5.27	(50,5)	7.07384E-06	-1.16068E-06	2.24053E-05	3.15870E-07	-3.68844E-06	7.18865E-05
Chron 24	52.9	65.28	108.62	-14.98	7.302	37	5.07	(50,5)	6.49424E-06	-1.16957E-06	2.15351E-05	3.37248E-07	-3.90018E-06	7.24074E-05
COB fit	55.9	58.19	116.34	-13.49	7.665	37	4.83	(50,5)	6.13795E-06	-1.26115E-06	2.09638E-05	3.84787E-07	-4.33121E-06	7.26627E-05

Parameters: r, total misfit; K, estimated quality factor; dF, degrees of freedom; N, number of data points; s, number of great circle segments; the unvertainty of fracture zone and magnetic anomaly identification is $\sigma = 5.00$ km; ages are after Cande and Kent (1995) timescale.

Covariance matrix:

b С а d b е f

е С

Finite Rotation of the eastern Aegir Segment relative to a stationary Greenland plate (Kolbeinsey Ridge from present-day to Chron 6; Aegir Ridge and formation of the Jan Mayen microcontinent from Chron 6 to 55.9 Ma)

		P	ole of Rotation		Paran	neters	/Uncerta	inties	Covariance matrice					
Stage	Age (in Ma)	Latitude (°N)	Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	e	f
Chron 5	10.3	75.53	130.38	-2.95	0.264	37	140.07	(50,5)	3.37604E-05	-2.72202E-06	6.82058E-05	3.26634E-07	-5.47073E-06	1.38286E-04
Chron 5A	14.2	71.95	131.63	-3.79	0.453	37	81.63	(50,5)	3.28785E-05	-3.45890E-06	6.74273E-05	4.71012E-07	-7.06973E-06	1.38781E-04
Chron 6	19.6	70.26	128.88	-5.11	0.752	37	49.22	(50,5)	3.15624E-05	-4.40582E-06	6.62449E-05	7.22443E-07	-9.23033E-06	1.39555E-04
Chron 8	26.4	72.93	125.52	-7.22	1.137	37	32.54	(50,5)	3.02996E-05	-5.60433E-06	6.50295E-05	1.14522E-06	-1.20211E-05	1.40097E-04
Chron 13	33.3	67.49	131.23	-7.41	1.351	37	27.39	(50,5)	2.92846E-05	-6.15803E-06	6.40681E-05	1.40339E-06	-1.34704E-05	1.40714E-04
Chron 17	36.6	58.63	134.63	-7.14	1.499	37	24.69	(50,5)	2.81783E-05	-6.42865E-06	6.30294E-05	1.57448E-06	-1.43812E-05	1.41556E-04
Chron 18	39.4	40.54	141.68	-6.3	1.581	37	23.41	(50,5)	2.76918E-05	-6.57201E-06	6.25567E-05	1.66589E-06	-1.48495E-05	1.41909E-04
Chron 20	43.2	9.07	147.77	-6.77	1.747	37	21.18	(50,5)	2.67469E-05	-6.95227E-06	6.16049E-05	1.91086E-06	-1.60210E-05	1.42518E-04
Chron 21	47.1	-17.37	150.55	-9.54	1.908	37	19.39	(50,5)	2.53132E-05	-7.25509E-06	6.01471E-05	2.18036E-06	-1.72551E-05	1.43598E-04
Chron 22	49.4	-9.26	146.96	-9.38	2.084	37	17.76	(50,5)	2.39508E-05	-7.53782E-06	5.87084E-05	2.47477E-06	-1.85002E-05	1.44619E-04
Chron 23	51.3	-9.34	145.62	-10.04	2.000	37	18.50	(50,5)	2.28652E-05	-7.74116E-06	5.75163E-05	2.72370E-06	-1.95029E-05	1.45426E-04
Chron 24	52.9	-13.14	144.00	-11.09	2.059	37	17.97	(50,5)	2.14892E-05	-7.69752E-06	5.59844E-05	2.86006E-06	-2.00914E-05	1.46651E-04
COB fit	55.9	-26.23	145.51	-14.74	2.106	37	17.57	(50,5)	1.98802E-05	-7.84667E-06	5.40631E-05	3.19841E-06	-2.13921E-05	1.47910E-04

Finite Rotation of the eastern Kolbeinsey Segment relative to a stationary Greenland plate (Kolbeinsey Ridge from present-day to Chron 6; Aegir Ridge and formation of the Jan Mayen microcontinent from Chron 6 to 55.9 Ma)

		l	Pole of Rotation		Paran	neters/	Uncerta	inties	Covariance matrice						
Stage	Age (in Ma)	Latitude (°N	I) Longitude (°E)	Angle (°)	<i>r</i> (km)	dF	К	(N,s)	а	b	С	d	e	f	
Chron 5	10.3	74.79	131.33	-2.93	19.779	117	5.92	(132,6)	3.91855E-06	-1.03367E-06	1.05774E-05	3.64884E-07	-2.83859E-06	2.87650E-05	
Chron 5A	14.2	70.94	132.21	-3.73	19.812	117	5.91	(132,6)	3.76973E-06	-1.11473E-06	1.03874E-05	4.23204E-07	-3.12510E-06	2.88454E-05	
Chron 6	19.6	68.79	130.81	-5.00	19.863	117	5.89	(132,6)	3.55452E-06	-1.21445E-06	1.01044E-05	5.10734E-07	-3.51415E-06	2.89634E-05	
Chron 8	26.4	83.83	74.64	-10.88	19.903	117	5.88	(132,6)	3.40840E-06	-1.30832E-06	9.89661E-06	6.01626E-07	-3.88794E-06	2.90161E-05	
Chron 13	33.3	81.65	16.52	-17.25	19.908	117	5.88	(132,6)	3.32325E-06	-1.31057E-06	9.77506E-06	6.16955E-07	-3.96893E-06	2.90866E-05	
Chron 17	36.6	80.56	8.73	-20.08	19.914	117	5.88	(132,6)	3.29100E-06	-1.32335E-06	9.72599E-06	6.32305E-07	-4.03559E-06	2.91048E-05	
Chron 18	39.4	81.25	12.84	-18.91	19.921	117	5.87	(132,6)	3.28140E-06	-1.32943E-06	9.71402E-06	6.39295E-07	-4.05689E-06	2.91086E-05	
Chron 20	43.2	80.30	5.28	-21.90	19.936	117	5.87	(132,6)	3.26829E-06	-1.35301E-06	9.68859E-06	6.60805E-07	-4.14300E-06	2.91010E-05	
Chron 21	47.1	79.17	-3.80	-26.56	19.933	117	5.87	(132,6)	3.30338E-06	-1.41939E-06	9.71997E-06	7.10129E-07	-4.32307E-06	2.90201E-05	
Chron 22	49.4	79.96	-1.14	-25.38	19.942	117	5.87	(132,6)	3.25310E-06	-1.42955E-06	9.65214E-06	7.29963E-07	-4.38724E-06	2.90525E-05	
Chron 23	51.3	79.55	0.98	-25.62	19.934	117	5.87	(132,6)	3.20217E-06	-1.38660E-06	9.58804E-06	7.01466E-07	-4.29867E-06	2.91325E-05	
Chron 24	52.9	78.15	-5.17	-30.20	19.942	117	5.87	(132,6)	3.24697E-06	-1.40902E-06	9.63906E-06	7.10087E-07	-4.34076E-06	2.90799E-05	
COB fit	55.9	78.41	-4.51	-29.79	19.944	117	5.87	(132,6)	3.22662E-06	-1.41396E-06	9.61111E-06	7.18972E-07	-4.36974E-06	2.90920E-05	

Parameters: r, total misfit; K, estimated quality factor; dF, degrees of freedom; N, number of data points; s, number of great circle segments; the unvertainty of fracture zone and magnetic anomaly identification is σ = 5.00 km; ages are after Cande and Kent (1995) timescale.

Covariance matrix:

a b c b d e c e f