
1.  Introduction
One of the primary goals in Earth Science is to understand the physical processes that govern natural phenom-
ena. This will facilitate prediction of potential hazardous events, such as earthquakes, volcanic eruptions, and 
related threats such as tsunamis (Fagents et al., 2013; Geller, 1997; Rundle et al., 2021; Ulrich et al., 2019). 
Predicting causes and effects of climate change, the reduction of global warming by storing CO2 or the safety of 
storing nuclear waste, strongly rely on the understanding of underlying coupled physical processes (Orr, 2018; X. 
Zhang et al., 2022). Furthermore, the exploration of fossil fuels and raw materials in economic ore deposits, and 
most importantly the transition to renewable energy rely on a good understanding of the physics of geological 
processes (Feng et al., 2021; Vehling et al., 2020; Weis et al., 2012). In many cases, numerical models that solve 
the mathematical equations governing the physics are the only way to predict such natural processes. Even though 
most coupled natural processes are nonequilibrium processes, the local equilibrium thermodynamic assumption 
is needed to close the system of mass, momentum, and energy equations and construct the model (De Groot & 
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Mazur, 1984; Lebon et al., 2008). Without the knowledge of thermodynamic behavior of rocks, minerals, melts, 
fluids, and gases involved in the process quantitative and predictive models cannot be constructed.

Transport processes such as diffusion, advection, and deformation, play a major role in all the important topics and 
are nearly always coupled to chemical reactions. Thus, reactive transport models have been a subject of geoscience 
research for many years (Steefel, 2019; Steefel et al., 2005). A large number of reactive transport codes has been 
developed particularly with the focus of subsurface processes (Kulik et al., 2012; Steefel et al., 2014) and applied 
to relevant geological problems in the subsurface (e.g., Sonnenthal et al., 2005; Wanner et al., 2014). A thorough 
review of the vast amount of work on reactive transport would be too extensive for the scope of this paper. For an 
overview of the main reactive transport codes in use for subsurface processes see Steefel et al. (2014).

Natural observations on, for example, exposed mantle rocks exhumed from great depth can be used to learn 
something about natural processes of CO2 sequestration (Kelemen & Matter, 2008) and may lead to new insights 
for human carbon storage. In this context, knowledge of the thermodynamic behavior of minerals is also impor-
tant for industrial processes and may lead to useful discoveries for example for carbon sequestration (Glasser 
et al., 2016).

Large-scale geodynamic processes influence processes at the Earth's surface and play a role in the global geochem-
ical cycles, the water budget, melt generation at ocean ridges and in collision zones, and erosion in mountain belts. 
In subduction zones, these processes are closely interconnected as dehydration of hydrated oceanic lithosphere 
generates fluids that may trigger earthquakes and induce melting in the mantle wedge that may ultimately lead to 
volcanism at the surface, including direct effects on climate (Bebout et al., 2018). Numerical models have been 
useful in gaining more understanding of the physical processes of migration of fluids from the subducting slab 
upwards (Tian, Katz, Rees Jones, & May, 2019; Wilson et al., 2014). Migration and melt focusing due to reaction 
infiltration instabilities have been studied by Aharonov et al. (1995). Connolly (1997) showed how coupling of 
dehydration reactions produces fluids that travel up in a viscoelastic matrix creating porosity waves as a mecha-
nism for fluid migration. Balashov and Yardley (1998) investigated the effect of reaction on porosity structure and 
fluid pressure variation. More recent models further investigated fluid focusing, transport, and reaction processes 
(Connolly & Podladchikov, 2007; Tian & Ague, 2014; Tian et al., 2018; Utkin & Afanasyev, 2021).

Recent progress in some of the important topics above has been made possible by coupling the local equilib-
rium thermodynamics to transport codes. Plümper et al. (2017) showed how the initialization of dehydration in 
subduction zones is dominated by chemical heterogeneities that control the thermodynamics on the microscale. 
Coupled to mass conservation and fluid flow, these local chemical heterogeneities lead from an initially formed 
local porosity to the development of fluid pathways.

The timescales of geological processes can vary between milliseconds to billions of years (Beinlich et al., 2020). 
With the use of numerical models combined with field observations, the duration of geological processes orig-
inally thought to be on the geological timescales have been shown to be much faster (Ague & Baxter, 2007; 
Beinlich et al., 2020; John et al., 2012). Therefore, the prediction of the speed of reaction fronts, and elemental 
transport hinges on quantitative models obeying mass, momentum, and energy conservation. Beinlich et al. (2020) 
used a reactive transport code coupled to local equilibrium thermodynamics to constrain the speed of natural CO2 
sequestration in serpentinites. The details behind the thermodynamic calculations in Beinlich et al. (2020) are 
given in this paper.

Complex solution models are almost exclusively used for phase diagram calculations (e.g., Connolly, 2005, 2009; 
de Capitani & Brown, 1987; Ghiorso et  al., 2002; Holland & Powell, 1998, 2011; Johnson et  al., 1992), but 
usually not for the transport codes. Nonideality of the solution models and its impact on the relation between equi-
librium fluid and solid composition (the so-called “isotherms”) has long been recognized as an important control 
on mass transport in porous reactive flows (Fletcher & Hofmann, 1974; Guy, 1993; Hofmann, 1972; Lichtner & 
Carey, 2006). However, it is underexplored mostly due to lack of transport models coupled to thermodynamically 
complex nonideal models including coupled substitutions, non-convex energy functions, and ordering.

We present a numerical thermodynamics laboratory which we shall call “Thermolab,” to do thermodynamic 
calculations on rocks, minerals, melts, and fluids involving aqueous species. We further show how this can be 
used in reactive transport models that are based on laws of mass, momentum, and energy conservation. Code 
examples are written in MATLAB/OCTAVE as it provides a transparent way of translating the mathematics and 
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documenting the algorithms. Matlab also provides a prototype coding development platform. Short MATLAB 
codes serve as “flow charts” used in the past to document the algorithms. The advantage of the MATLAB/
OCTAVE codes compared to the “flow charts” is that those are actually working computer programs, and can be 
copy-pasted from the figure and executed. Once working these codes can also be easily translated to any preferred 
programming language for optimization and supercomputing. The focus in this contribution is entirely on the 
technicalities with limited example applications. We document the nonideality of the models and the impact on 
nonlinear transport processes in open systems by showing examples of how this can be achieved with Thermolab. 
Future studies will be investigating the impact of the nonideality on mass transport.

2.  Background and Motivation
A typical set of equations that governs the physics of the reactive transport based on Beinlich et al. (2020) is shown 
to motivate the use of equilibrium thermodynamics in transport processes. We consider the one-dimensional 
transport of a mobile species described by the total mass concentration balance, assuming nonmoving, nonde-
forming solid (vs (x,t) = 0):

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
= −

(

𝜕𝜕𝜕𝜕𝐶𝐶𝑓𝑓
(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝐶𝐶𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝑞𝑞𝐷𝐷(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕

)

� (1)

with total mass concentration in the time derivative above defined as:

𝐶𝐶tot (𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝐶𝐶𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥) + 𝜌𝜌𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝐶𝐶𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥) ⋅ (1 − 𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥))� (2)

where ρf and ρs are density of fluid and solid, respectively, Cf and Cs are concentration in mass fraction of a 
species in fluid and solid, respectively, and ϕ is volume fraction of fluid, all varying as a function of time and 
space.

In Equation 1, the Darcy flux, qD and qCf diffusion flux in fluid are given by:

𝑞𝑞𝐷𝐷(𝑥𝑥𝑥 𝑥𝑥) = −𝑘𝑘(𝑥𝑥𝑥 𝑥𝑥) ⋅
𝜕𝜕𝜕𝜕𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕

𝑞𝑞𝐶𝐶𝑓𝑓
(𝑥𝑥𝑥 𝑥𝑥) = −𝐷𝐷eff

𝑓𝑓
(𝑥𝑥𝑥 𝑥𝑥) ⋅

𝜕𝜕𝜕𝜕𝐶𝐶𝑓𝑓
(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕

� (3)

where, Pf is fluid pressure, and 𝐴𝐴 𝐴𝐴𝐶𝐶𝑓𝑓
 is chemical potential of the species in the fluid. Gravitational effects in the 

Darcy flux have been neglected. Furthermore, the transient permeability k and effective diffusivity 𝐴𝐴 𝐴𝐴eff

𝑓𝑓
 of the 

mobile species are defined as:

𝑘𝑘(𝑥𝑥𝑥 𝑥𝑥) =
𝑘𝑘0

⋅ 𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥)
3

𝜂𝜂𝑓𝑓

𝐷𝐷eff

𝑓𝑓
(𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌𝑓𝑓 ⋅ (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝐶𝐶𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥) ⋅𝐷𝐷𝐶𝐶𝑓𝑓

� (4)

where k 0 is background permeability, ηf is fluid viscosity, 𝐴𝐴 𝐴𝐴𝐶𝐶𝑓𝑓
 is the diffusion coefficient of the species in the 

fluid, and the latter three parameters are assumed constant.

For this simplifying case, conservation of total mass of the system becomes:

𝜕𝜕𝜕𝜕tot (𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝜕𝜕𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝑞𝑞𝐷𝐷(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
� (5)

with total mass density defined as:

𝜌𝜌tot (𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥) + 𝜌𝜌𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥) ⋅ (1 − 𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥))� (6)

Porosity evolution is governed by the time integrated mass conservation equation of an immobile species in the 
solid, ρim (e.g., Beinlich et al., 2020; Malvoisin et al., 2015; Plümper et al., 2017):

𝜑𝜑(𝑥𝑥𝑥 𝑥𝑥) = 1 −
(1 − 𝜑𝜑 (𝑥𝑥𝑥 𝑥𝑥0)) ⋅ 𝜌𝜌im (𝑥𝑥𝑥 𝑥𝑥0)

𝜌𝜌im(𝑥𝑥𝑥 𝑥𝑥)
� (7)
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where ϕ(x,t0) and ρim (x,t0) are the initial values of porosity and immobile species density at t0 and may vary in 
space.

In Equation 7, the expression for ρn(x,t) in Malvoisin et al. (2015) and Plümper et al. (2017), where fluid was pure 
water, is replaced with ρim(x,t), which denotes the mass density of any immobile species in the solid:

𝜌𝜌im(𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥) ⋅ 𝐶𝐶
im
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥)� (8)

The full set of equations above presents a system of three equations for eight unknowns: fluid and solid density 
(ρf), and (ρs), weight fraction of a mobile component in fluid and solid (Cf), and (Cs), chemical potential of the 
component in the fluid (μCf), and the weight fraction of an immobile component in the solid (𝐴𝐴 𝐴𝐴 im

𝑠𝑠  ), porosity (ϕ), 
and fluid pressure (Pf). All unknowns vary in time and space. Background permeability (k 0), fluid viscosity (ηf), 
and diffusion coefficient of mobile component Cf in the fluid (𝐴𝐴 𝐴𝐴𝐶𝐶𝑓𝑓

 ) are given and kept constant. Porosity, fluid 
pressure, and either the fluid or the solid composition of each component in the system are not thermodynami-
cally constrained and the three equations are solved for ϕ, Pf , and Cs. The remaining unknowns, solid and fluid 
compositions and densities, are found from thermodynamic relationships and in general vary as a function of 
temperature, pressure, and composition. The equations above imply the assumption of constant temperature, 
which may be justified in the case of a small modeling domain where temperature is nearly instantly homoge-
nized. Furthermore, we neglect the effect of varying pressure on the thermodynamic properties arguably justified 
in the case pressure variations are kept small.

In complex mineral, melt, and fluid solutions, the nonideal mixing behavior leads to nonlinear thermodynamic 
relationships. Parameterization of the various variables to obtain analytical expressions to close the system 
of transport equations may be possible in some cases (Tian, Katz, & Rees Jones, 2019), but may be difficult 
or impossible due to the complex topologies and discontinuities of phase assemblage boundaries (Stixrude & 
Lithgow-Bertelloni, 2022). In that case these thermodynamic properties either have to be directly calculated 
(i.e., on-the fly) or a precomputed lookup table may be prepared to interpolate the needed values. Here, we 
compute these relationships with Thermolab, benchmarked with phase diagrams for rocks, fluids, and melts. 
Using MATLAB codes, the first part of this contribution documents the technical details of the equilibrium 
thermodynamic calculations and the treatment of solid solutions. This is considered essential to understand the  
effects on nonlinear transport processes. We include a description of methods to sufficiently resolve the equilib-
rium compositions and densities of the involved phases. This is needed to avoid numerical artifacts and instability  
in the transport codes. In the last part, we get back to a detailed example of the implementation and solution  of  the   
system of transport equations in which all quantities evolve through time. For a full list of symbols and notation 
see Table 1.

3.  Gibbs Energy Calculation
The starting point of equilibrium thermodynamic calculations in Thermolab is the Gibbs energy of a mineral, 
melt, or fluid. All other required properties are derived from the Gibbs energy. The calculation of Gibbs ener-
gies requires in the first place an internally consistent thermodynamic data set for pure solids, fluids, gases, or 
aqueous species, often referred to as endmembers. Second, it needs solution models that describe the energy of 
mixing between endmembers dissolved in a phase, also referred to as mixing models or activity-composition 
relationships (e.g., Ganguly, 2020; Holland & Powell, 2003). Thermolab currently has built in several internally 
consistent thermodynamic data sets for minerals, melts, and fluids, the most extensive and up-to-date are the 
Holland and Powell endmember databases (Holland & Powell, 1998, 2011). The SUPCRT (dslop98) mineral 
database (Helgeson et al., 1978; Johnson et al., 1992) is implemented to allow calculations with additional miner-
als not included in the Holland and Powell data sets. For water (and/or CO2), several equations of state (EOS)  
are implemented, including the EOS of the International Association for the Properties of Water and Steam 
(IAPWS) (Wagner & Pruss, 2002, revised version, 2018), the EOS of Johnson and Norton (1991), Z. G. Zhang 
and Duan (2005), C. Zhang and Duan (2009), Pitzer and Sterner  (1994), and the CORK EOS, from Holland 
and Powell  (1991). For aqueous species, we have implemented the Holland and Powell  (1998) formulation, 
and the Tanger and Helgeson (1988) formulation as implemented in SUPCRT92 (Johnson et al., 1992) using   
the 1998 database including more than 1,300 aqueous species. Furthermore, it includes the Deep Earth Water 
(DEW) model (Sverjensky et al., 2014) with the recent updates and additional species from Huang and Sverjen-
sky (2019), Aranovich et al. (2020), and the Miron data set for aqueous species (Miron et al., 2016). This forms 
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Symbol Meaning Units MATLAB

Ctot Total mass concentration of a species kg/m 3 Ctot

Cf Concentration of species in fluid Weight fraction Cf

Cs Concentration of species in solid Weight fraction Cs

Cs,im concentration of immobile species in solid Weight fraction Cs_im

t Time s time

t0 Initial t s time

x Spatial coordinate in x dimension m x

ρf Density of fluid kg/m 3 rhof

ρs Density of solid kg/m 3 rhos

ρtot Total mass density kg/m 3 rhotot

ρim Mass density of immobile species kg/m 3 rho_im

Φ Porosity (volume fraction of fluid) Volume fraction phi

k 0 Background permeability m 2 k0

k Permeability m 2 perm

ηf Fluid viscosity Pa s rhotot

Pf Fluid pressure Pa Pf

DCf Diffusion coefficient of species in fluid m 2/s DC

𝐴𝐴 𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐
Effective diffusivity of species in fluid m 2/s Deff

μCf Chemical potential of species in fluid J/mol mu

g 0 Specific endmember Gibbs energy J/mol g0

𝐴𝐴 𝐴𝐴0
𝑚𝑚 Molality based endmember Gibbs energy J/mol per kg water g0

𝐴𝐴 𝐴𝐴0
𝑥𝑥 Mole fraction based endmember Gibbs energy J/mol g0

s 0 Specific endmember entropy J/mol S

h 0 Specific endmember enthalpy J/mol H

v 0 Specific endmember volume J/bar v0

𝐴𝐴 𝐴𝐴0
𝑒𝑒𝑒𝑒𝑒𝑒 Specific endmember excess Gibbs energy term J/mol Gexc

T Temperature K T

Tr Reference temperature, 298.15°K K Tr

P Pressure Pa P

Pr Reference pressure, 10 5 Pa Pa Pr

R Universal gas constant J/mol/K R

𝐴𝐴 𝐴𝐴0
𝑟𝑟 Specific endmember Gibbs energy at Tr, Pr J/mol Gr

𝐴𝐴 𝐴𝐴0

𝑃𝑃𝑃𝑃
Specific endmember Gibbs energy at T, Pr J/mol –

𝐴𝐴 𝐴𝐴0𝑟𝑟 Entropy at Tr, Pr J/mol Sr

𝐴𝐴 𝐴0
𝑟𝑟 Enthalpy a Tr, Pr J/mol Hr

𝐴𝐴 𝐴𝐴0𝑟𝑟 Volume at Tr, Pr J/bar Vr

𝐴𝐴 𝐴𝐴0
𝑃𝑃𝑃𝑃

Volume at T, Pr J/bar V1_T

a Heat capacity coefficient kJ/K a

b Heat capacity coefficient kJ/K 2 b

c Heat capacity coefficient kJ K c

d Heat capacity coefficient kJ K −1/2 d

aMRK Fluid EOS coefficient kJ 2 kbar K 1/2 mol −2 a

Table 1 
List of Symbols and Abbreviations
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Table 1 
Continued

Symbol Meaning Units MATLAB

bMRK Fluid EOS coefficient kJ kbar −1 mol −1 b

𝐴𝐴 𝐴𝐴0
𝑓𝑓

Specific volume of fluid J/bar vf0

KPr Bulk modulus at T, Pr kbar k

Kʹ Derivative of bulk modulus kp

cP Heat capacity J/mol/K Cp

ν Stoichiometric coefficients in chemical reaction mol v

Gsys Gibbs energy of system J Gsys

g Specific Gibbs energy of a mixture J/mol g

gmech Specific Gibbs energy of a mechanical mixing J/mol gmech

gid Specific Gibbs energy of a ideal mixing J/mol gid

gnid Specific Gibbs energy of a nonideal mixing J/mol gnid

p Vector of proportions of endmember in a mixture mol fraction p

m Site multiplicity vector in ideal mixing energy mol mtpl

z Vector of site fraction in a mixture mol fraction z

St Site occupancy table mol st

Zt Site fraction endmember matrix mol fraction zt

Mw Molar mass of water kg/mol Mw

Keq Equilibrium constant – Keq

𝐴𝐴 ∆𝐺𝐺0
𝑟𝑟𝑟𝑟𝑟𝑟 Difference in g 0 between products and reactants J dGrxn

α Molar amount of phase from Gibbs minimization mol alph

α Vector of molar amount of phases from linprog mol alph

Νphs Matrix of composition of phases in mol mol Nphs

nsys Vector of system compositions in mol mol nsys

V mol Molar volume of phase m 3/mol Vmol

m mol Molar mass of phase kg/mol Mmol

mmol Molar mass of phase vector kg/mol Mmol

molm Molar mass of components vector kg/mol molm

ρ Density of a phase kg/m 3 rho

ϕ Volume fraction of phase – phi

ϕ mol Mole fraction of phase – phim

ϕ mol Vector of mole fraction of phases – phim

ϕ wt Weight fraction of phase – phiw

ρss Vector of densities of solids kg/m 3 rho(solid_id)

ϕss Vector of volume fraction of solids – phi(solid_id)

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠 Chemical potential of component A in solid J/mol muA

𝐴𝐴 𝐴𝐴𝐵𝐵
𝑠𝑠 Chemical potential of component B in solid J/mol muB

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠 Concentration of component A in solid 1 mol or mass fraction c

𝐴𝐴 𝐴𝐴𝐵𝐵
𝑠𝑠 Concentration of component B in solid 2 mol or mass fraction (1-c)

DCs Diffusion coefficient in solid m 2/s Dc

γ Cahn-Hilliard surface energy parameter m 2 J/mol gam

𝐴𝐴 𝐴 Element-wise multiplication operator

Note. Symbols in italics for scalar variables, bold font for vectors, and bold capitals to denote matrices.
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the endmember basis for use in thermodynamics of mixtures and for the local equilibrium calculations. In the 
future, this can be extended with additional thermodynamic endmember data sets. The following documents 
the main code as shown in an example in Figure 1. The mathematical notation follows the convention that bold 
font variables present vectors, bold font capital variables represent matrices, and all others are scalars variables. 
Meaning of symbols and variables are summarized in Table 1.

Figure 1.  Thermolab code example to calculate the Gibbs energies of a phase for a given composition at fixed temperature (T) and pressure (P). Here is an example 
for the amphibole model of Green et al. (2016). This code is a possible MATLAB translation of the equations and methods documented in the Gibbs energy calculation 
section of the main text. The first line in the code clears MATLAB memory and figure. In Lines 3 and 4, T and P are defined. Lines 5 and 6 specify, respectively, for 
which phase to calculate the Gibbs energy and the name of the Excel file in which the solution model data is stored. Line 7 specifies the name of the elements in the 
phase, and line 8 the corresponding composition in moles for which to calculate the Gibbs energy. Line 10 is a call to read the needed thermodynamic data. Lines 12 
and 13 are needed for aqueous species and compute the density and dielectric constant of water. Lines 15–24 compute the Gibbs energy of the endmembers in the 
solution (e.g., Equations 9, 12 and 17). Proportions and site fractions are calculated in lines 26–33. Numerical errors are removed in lines 35 and 36. In Lines 29 and 
30, a grid of all possible states of order-disorder is generated for the particular composition of the phase specified in line 8. For all these compositions the mechanical, 
ideal, and nonideal mixing energy is calculated in lines 38, 39, and 40, respectively. The nonideal Gibbs energy, line 40, is a call to an external function that comprises 
a collection of nonideal mixing functions that can be opted. Line 43 finds the Gibbs energy that is minimum and thus finds the state of order-disorder. Line 44 displays 
the corresponding proportions of the endmembers.
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3.1.  Endmembers

An internally consistent thermodynamic database contains the Gibbs energy of an endmember, for example, a 
mineral, gas, fluid, or melt species with a fixed composition at reference conditions (𝐴𝐴 𝐴𝐴0

𝑟𝑟  ). Alternatively, it holds 
enthalpy and entropy data from which the Gibbs energy of an endmember at reference conditions can be obtained:

𝑔𝑔0
𝑟𝑟 (𝑇𝑇𝑟𝑟, 𝑃𝑃𝑟𝑟) = ℎ0

𝑟𝑟 (𝑇𝑇𝑟𝑟, 𝑃𝑃𝑟𝑟) − 𝑇𝑇𝑟𝑟𝑠𝑠
0
𝑟𝑟 (𝑇𝑇𝑟𝑟, 𝑃𝑃𝑟𝑟)� (9)

where 𝐴𝐴 𝐴0
𝑟𝑟 is enthalpy and 𝐴𝐴 𝐴𝐴0𝑟𝑟 is entropy at reference temperature Tr = 298.15°K and pressure Pr = 10 5 Pa.

To calculate the Gibbs energy at elevated temperature the entropy is obtained by integration with respect to 
temperature at reference pressure (P = Pr):

𝑠𝑠0 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟) = 𝑠𝑠0𝑟𝑟 (𝑇𝑇𝑟𝑟,𝑃𝑃 𝑟𝑟) +

𝑇𝑇

∫
𝑇𝑇𝑟𝑟

𝑐𝑐𝑃𝑃 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟)

𝑇𝑇
𝑑𝑑𝑑𝑑� (10)

where cP is the heat capacity at constant reference pressure (Pr).

Then, the integral of entropy at reference pressure with respect to temperature is subtracted from the Gibbs energy 
at reference conditions to get the Gibbs energy at reference pressure and elevated temperature:

𝑔𝑔0

𝑃𝑃𝑟𝑟
(𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟) = 𝑔𝑔0

𝑟𝑟 (𝑇𝑇𝑟𝑟, 𝑃𝑃𝑟𝑟) −

𝑇𝑇

∫
𝑇𝑇𝑟𝑟

𝑠𝑠0 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟) 𝑑𝑑𝑑𝑑� (11)

To obtain the Gibbs energy at elevated pressure the volume, v 0, at fixed temperature is integrated with respect to 
pressure and added to the Gibbs energy at reference pressure for each temperature:

�0(� , � ) = �0�� (� , ��) +

�

∫
��

�0(� , � ) �� + �0
exc (� , � )� (12)

An additional temperature and pressure dependent excess Gibbs energy term (𝐴𝐴 𝐴𝐴0

exc ) is added to account for Landau 
phase transitions, ordering reactions, or in case of aqueous species for Gibbs energy of solvation.

3.1.1.  Solids

An example of a heat capacity expression to be used in Equation 10 consists of a four-parameter (a, b, c, and d) 
polynomial fit to experimental heat capacity data as used in the data set of Holland and Powell (1998, 2011):

𝑐𝑐𝑃𝑃 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 −2 + 𝑑𝑑𝑑𝑑 −1∕2� (13)

For the pressure dependence of Gibbs energy an equation of state (EOS) is used to relate volume to pressure. For 
example, the Murnaghan equation of state used by Holland and Powell (1998) (with K′ set to 4):

𝑃𝑃 = 𝑃𝑃𝑟𝑟 +
𝐾𝐾𝑃𝑃𝑟𝑟 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟)

𝐾𝐾 ′

⎡

⎢

⎢

⎣

(

𝑣𝑣0
𝑃𝑃𝑟𝑟
(𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟)

𝑣𝑣0(𝑇𝑇 𝑇 𝑇𝑇 )

)𝐾𝐾′

− 1

⎤

⎥

⎥

⎦

� (14)

where 𝐴𝐴 𝐴𝐴𝑃𝑃𝑟𝑟 is bulk modulus at reference pressure and 𝐴𝐴 𝐴𝐴0
𝑃𝑃𝑟𝑟

 is volume at reference pressure and given temperature.

Note that the reference pressure Pr is added to ensure the limit of standard reference conditions. The EOS can be 
rearranged for volume:

𝑣𝑣0(𝑇𝑇 𝑇 𝑇𝑇 ) = 𝑣𝑣0𝑟𝑟 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟)

[

1 + (𝑃𝑃 − 𝑃𝑃𝑟𝑟)

(

𝐾𝐾𝑃𝑃𝑟𝑟 (𝑇𝑇 𝑇 𝑇𝑇𝑟𝑟)

𝐾𝐾 ′

)]−
1

𝐾𝐾′

� (15)
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Substituting Equations 9, 10, 11, and 15 into Equation 12, and using a suitable heat capacity formula such as 
Equation 13, the integrals can be evaluated analytically or numerically. Lines 18–21 in Figure 1 show a MATLAB 
example of using Equations 9–12. In the example, the integrals are evaluated in a separate function. To use a 
different thermodynamic database, the heat capacity equation and EOS can be replaced with the appropriate 
expression. A number of important endmembers such as quartz are treated with additional volume and entropy 
terms to account for first or second order phase transitions such as heat capacity anomalies or order-disorder 
in the crystal lattice (e.g., sillimanite Holland and Powell (1996)). This then requires an excess Gibbs energy 
contribution, which in principle can also be calculated according to Equation 12 using different volume and heat 
capacities and integration limits (e.g., Berman & Brown, 1985). Alternatively, an expression for this additional 
energy is given (Holland & Powell, 1998). In the example in Figure 1, this is represented by a call to a MATLAB 
function (line 20 in Figure 1). For the specific details, we refer to the original papers documenting the internally 
consistent databases (Berman, 1988; Holland & Powell, 1998, 2011; Johnson et al., 1992).

3.1.2.  Fluids

For molecular fluids such as H2O and CO2, the EOS, for example, Equation 14, is replaced by an appropriate 
fluid EOS. As water is one of the most important fluids on our planet, extensive work has been done on the ther-
modynamic formulation. The main difference between solids is that the fluid EOS, especially for water, usually 
cannot easily be rearranged for volume as there are multiple volumes possible for a single pressure in the region 
of coexisting fluid and gas. An example of this is given by the Modified Redlich Kwong (MRK) EOS, on which 
Holland and Powell (1991) base the fluid Gibbs energies to be compatible with the extensively used thermody-
namically consistent data set of Holland and Powell (1998):

𝑃𝑃 =
𝑅𝑅𝑅𝑅

𝑣𝑣0
𝑓𝑓
− 𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀

−
𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀

𝑣𝑣0
𝑓𝑓

(

𝑣𝑣0
𝑓𝑓
+ 𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀

)
√

𝑇𝑇
� (16)

Because this is a multivalued function a suitable algorithm must be used to calculate volume as function of P-T 
in the two-phase region (e.g., where gas and liquid coexist). In the single-phase region, the volume for the stable 
phase (gas or liquid) should be determined. Holland and Powell (1991) rearranged the equation as a cubic in 
volume after which the correct root must be found in each phase region. Rather than solving which phase (e.g., 
gas, liquid, or both) is stable, the different regions were predefined and the correct volume was selected based 
on the P-T conditions. The MRK formulation in Equation 16 is extended with a virial contribution and Holland 
and Powell (1991) give detailed instructions on how to calculate the volume as function of P-T for H2O, CO2,  
and several other COH species. The advantage of the CORK formulation is that it can be integrated analytically 
and details in the original paper of Holland and Powell (1991) are sufficient for reproducing the values for  use  
 in  Thermolab. The more updated thermodynamically consistent data set of Holland and Powell (2011),  which  
replaces the Holland and Powell (1998) data set, uses the EOS of Pitzer and Sterner (1994).

Calculating the Gibbs energy of fluids then follows Equations 9–12 as for solids, with an entropy integral that is 
consistent with the data set for solid, melt, and/or gas endmembers. The Holland and Powell (1998, 2011) data 
sets have parameters for heat capacity, fitted simultaneously with the minerals to ensure the Gibbs energy at room 
pressure and elevated temperature can be calculated consistently.

In principle, the CORK or Pitzer and Sterner (1994) EOS can be used in conjunction with the SUPCRT mineral 
database, however, for the entropy integral a thermodynamically consistent heat capacity formulation is needed to 
obtain valid thermodynamic calculations. The SUPCRT database does not contain heat capacity values for H2O. 
The specific details needed for this calculation in the original papers of Johnson and Norton (1991) and Johnson 
et al. (1992) could not be found. Similarly, the DEW spreadsheet does not contain H2O entries and combines 
Delany and Helgeson (1978) and an internal routine for use only above at least 0.1 GPa, likely as it is intended 
to be used for Deep Earth applications. Moreover, at low P and T, for example, for shallow processes, the CORK 
EOS should not be used (Holland & Powell, 1991). We found that by using the NIST Shomate heat capacity 
equations (Shomate, 1954), using parameters from the NIST website for liquid water and gas, the Gibbs energies 
retrieved from SUPCRT can be reproduced accurately. The simplicity of the formulation and up-to-date online 
documentation of the parameters is of advantage. For calculations at elevated P, the numerical integration of the 
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IAPWS or the EOS of Johnson and Norton (1991) give satisfactory results at low T, whereas the CORK EOS can 
be used above 100°C (Holland & Powell, 1991).

3.1.3.  Aqueous Species

Gibbs energies of aqueous species are calculated in Thermolab following the formulation of Tanger and Helge-
son (1988) as also outlined in Johnson et al. (1992). The resulting Gibbs energies have been compared to the 
output from SUPCRT and are reproduced within ∼1 J precision. The DEW model (Sverjensky et al., 2014) and 
the Miron data set (Miron et al., 2016, 2017) use the same formulation, with refitted parameters for some of the 
endmember species. Although fundamentally the aqueous species are also calculated according to Equation 12, 
there is a difference to the solid, melt, and fluid endmembers because the aqueous species need the density and 
dielectric constant of the solvent. The contribution to Gibbs energy of solvation therefore needs the density and 
dielectric constant of water for the Born equation (Figure 1, Lines 12–13). This contribution is included in the 
excess Gibbs energy term (Figure 1, Line 20). Furthermore, it should be noted that these Gibbs energies are usually 
on a molality based scale. Note that in the example for amphibole in Figure 1, the properties of water  are  irrel-
evant, but to maintain some generality they have been left in the example. When computing the Gibbs energy 
of aqueous species, we change the name of the phase from “Amphibole” into any desired aqueous species or 
fluid mixture defined in a solution model database file. In Thermolab, the user can choose from a number of 
EOS and dielectric constants to be used in the aqueous species Gibbs energy (Fernández et al., 1997; Johnson & 
Norton, 1991; Sverjensky et al., 2014). The aqueous species endmembers of Holland and Powell (1998) offer a 
restricted set of species compared to the SUPCRT data, but it has the advantage that it is fitted in the internally 
consistent data set of the mineral, melt, and gas endmembers of Holland and Powell (1998, 2011). Their formu-
lation is based on the Anderson density equation (Anderson et al., 1991) and uses the CORK EOS for the water 
density. These aqueous species endmember data can also be used in fluid mixtures (Evans & Powell, 2007).

3.1.4.  Dependent Endmembers

Endmembers can also be formed from a linear combination of several other endmembers (Figure 1, Line 23):

𝑔𝑔0

dep
= 𝜈𝜈 ⋅ 𝐠𝐠0� (17)

where the ν holds the stoichiometric reaction coefficients. A formation energy may be associated with such a 
reaction and this can be captured in any functional form in the excess Gibbs energy term of Equation 12.

3.2.  Gibbs Energy of Mixtures

The Gibbs energy of a phase (mineral, gas, fluid, or melt species) that can form a mixture between several 
endmembers is represented by the sum of mechanical, ideal, and nonideal mixing energies (Figure 1, Line 41):

𝑔𝑔 = 𝑔𝑔mech + 𝑔𝑔id + 𝑔𝑔nid� (18)

The mechanical part of the mixing is the sum of the Gibbs energy of all endmembers in the mixture (g 0), weighted 
by their proportions (p) (Figure 1, Line 38).

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐩𝐩 ⋅ 𝐠𝐠
0� (19)

The ideal mixing Gibbs energy is given by a linear combination of the site fractions (z) in the mixture multiplied 
with their logarithm and the site multiplicity (m) (Figure 1, Line 39):

𝑔𝑔𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝐦𝐦 ⋅ (𝐳𝐳 ⊙ ln(𝐳𝐳) –𝐙𝐙𝐭𝐭 ⊙ ln (𝐙𝐙𝐭𝐭) ⋅ 𝐩𝐩)� (20)

where the symbol 𝐴𝐴 𝐴 indicates elementwise multiplication of vectors and matrices.

Using the site fractions of the endmembers (Zt), the last term in Equation 20 ensures that the ideal Gibbs energy 
is zero in the limit of the pure endmember. This for example occurs when a solution model is defined with certain 
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endmembers having site fractions between 0 and 1 (e.g., Appendix in Tajčmanová et al., 2009). How to obtain m, 
p, z, and Zt is explained in the following section.

Nonideal Gibbs energy can be calculated in the simplest way with a binary mixing formula:

𝑔𝑔nid = 𝐩𝐩
𝐓𝐓
⋅𝐖𝐖 ⋅ 𝐩𝐩� (21)

This is essentially a sum of multiplications of binary pairs of endmembers in the mixture multiplied with their 
interaction parameters. These interaction parameters can depend on composition to get an asymmetric mixing 
formulation, referred to as subregular mixing model (Ganguly, 2020). When p is replaced with a size parame-
ter adjusted proportion and using the appropriate W the asymmetric formulism of Holland and Powell (2003) 
can be used. If the molar volumes of the endmembers are used as size parameter, it is essentially a Van Laar 
mixing model (Van Laar, 1906), as for example, used by Aranovich and Newton (1999). The W and any size 
parameters are in general also temperature and pressure dependent such as also the molar volume used in Van 
Laar mixing models. Any other regular or subregular solution models can be used in place of Equation 21 
and ternary interaction terms may be added. In Thermolab, it is possible to expand the codes with a variety of 
mixing formulas for the nonideality  by adding the appropriate formulation to the function called in line 40 in 
Figure 1.

3.3.  Solution Models

The data for m and Zt are retrieved from a site occupancy table, stored for example, in an Excel spreadsheet. 
In this spreadsheet, also data for W and any size parameters for asymmetric formalism models (Holland & 
Powell, 2003) and the model type are stored. In Figure 1, the data is loaded in the beginning of the code (Line 10, 
Figure 1) from a function that reads the Excel data. Site fractions z are obtained by multiplying the transpose of 
the site fraction speciation matrix with a column vector of proportions:

𝐳𝐳 = 𝐙𝐙
𝑇𝑇
𝐭𝐭
⋅ 𝐩𝐩� (22)

After specifying proportions of the endmembers in a solution, the Gibbs energy of that particular phase and 
composition at a given P and T can be calculated from the above.

3.3.1.  Site Occupancy

The site occupancy of the mixture can be represented by a table listing the occupancy of crystallographic sites for 
each endmember. For example, a binary olivine solution with only one crystallographic site M, and a fixed silica 
tetrahedral site (which has composition SiO4), is shown in Table 2. It can be represented by a matrix:

𝐒𝐒𝐭𝐭 =

⎡

⎢

⎢

⎣

2 0 1

0 2 1

⎤

⎥

⎥

⎦

� (23)

The columns represent occupancy of each species on a crystallographic site for the endmember in the rows 
of the table. Site fractions z can be retrieved from this table by dividing each site occupancy over the sum of 
moles of the species on that site. Unless defined otherwise by the authors of a solution model, the sum of moles 

of all species on each site gives the site multiplicity, and can be represented 
by a vector:

𝐦𝐦 =

[

2 2 1

]

� (24)

As the site multiplicity data is not always determined from St because of 
decisions by the authors of the solution model, we store the multiplicity 
values in the spreadsheet. Examples where the theoretical site multiplicity is 
replaced by a different value is for example the T1 site in Amphibole (Diener 
et al., 2007), where the authors have taken 1 instead of 4 (Appendix A).

Site M T

Occupancy Mg Fe SiO4

Endmember

Forsterite 2 0 1

Fayalite 0 2 1

Table 2 
Binary Olivine Site Occupancy
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Elementwise division of each row in Table 2 or in matrix Equation 23 with 
this multiplicity vector leads to a table of site fractions represented by the 
matrix (Table 3):

�� =
⎡

⎢

⎢

⎣

1

0

0 1

1 1

⎤

⎥

⎥

⎦

� (25)

Using Equation  22 and spelling this out in matrix-vector notation, it 
is essentially a set of equations where the coefficients in front of the 
proportions are directly read from the site fraction table (Table  3) and 
then transposed:

⎡

⎢

⎢

⎢

⎢

⎣

��Mg

��Fe

��SiO4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0

0 1

1 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

���

���

⎤

⎥

⎥

⎦

� (26)

The site fractions become:

𝑧𝑧𝑀𝑀
Mg

= 𝑝𝑝𝑓𝑓𝑓𝑓

𝑧𝑧𝑀𝑀
Fe

= 𝑝𝑝𝑓𝑓𝑓𝑓

𝑧𝑧𝑇𝑇
SiO4

= 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓

� (27)

3.3.2.  Ordering

In fact, in olivine, Mg and Fe can interchange on two molecular sites M1 and M2 (Cemič, 2005). This exchange 
can take place while total chemistry of the olivine is fixed. To account for variations in distribution of Mg and Fe 
over the M1 and M2 sites a third endmember to account for the ordering on the sites is introduced. Introducing 
the endmember “Ordered Olivine” which has a composition composed of 0.5 mol forsterite and 0.5 mol fayalite 
and having an “ordered” configuration with all Mg on M1 and all Fe on M2. We may write the site speciation as 
shown in Table 4.

The Gibbs energy of this endmember can be made out of two endmembers, 0.5 mol of forsterite and 0.5 mol of 
fayalite and an energy of reaction may be added.

After this, we get three proportions that define the Gibbs energy. To reach the configuration with all Fe on M1 and 
all Mg on M2, a negative proportion of the ordered olivine must be used (Powell & Holland, 1999).

Using the speciation matrix and Equation 22 we get:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧𝑧𝑀𝑀1

Mg

𝑧𝑧𝑀𝑀1

Fe

𝑧𝑧𝑀𝑀2

Mg

𝑧𝑧𝑀𝑀2

Fe

𝑧𝑧𝑇𝑇
SiO4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1

0 1 0

1 0 0

0 1 1

1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

� (28)

Giving the site fractions:

Site M T

Occupancy Mg Fe SiO4

Site multiplicity 2 2 1

Endmember

Forsterite 1 0 1

Fayalite 0 1 1

Table 3 
Binary Olivine Site Fraction Table

Site M1 M2 T

Occupancy Mg Fe Mg Fe SiO4

Endmember

  Forsterite (fo) 1 0 1 0 1

  Fayalite (fa) 0 1 0 1 1

  Ordered Olivine (od) 1 0 0 1 1

Table 4 
Site Occupancy Table of Olivine With Ordering of Fe-Mg on M1 and M2 
Sites
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𝑧𝑧𝑀𝑀1

Mg
= 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜

𝑧𝑧𝑀𝑀1

Fe
= 𝑝𝑝𝑓𝑓𝑓𝑓

𝑧𝑧𝑀𝑀2

Mg
= 𝑝𝑝𝑓𝑓𝑓𝑓

𝑧𝑧𝑀𝑀2

Fe
= 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜

𝑧𝑧𝑇𝑇
SiO4

= 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜

� (29)

3.3.3.  Worked Example

Using the multiplicities and site fractions for the olivine example without order-disorder we get using Equation 20:

𝑔𝑔𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑅𝑅 2
(

𝑧𝑧𝑀𝑀
Mg

⋅ ln
(

𝑧𝑧𝑀𝑀
Mg

)

+ 𝑧𝑧𝑀𝑀
Fe
⋅ ln

(

𝑧𝑧𝑀𝑀
Fe

))

� (30)

(Note that the T-site fraction cancels due to the logarithms because the site fraction is always 1).

From Equation 21, the nonideal mixing energy becomes:

𝑔𝑔nid = (𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓� (31)

In case we use a Holland and Powell (1998) model for olivine, the nonideal parameters are equal to each other 
and reduce to the simple binary symmetric mixing parabola:

𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 = 2𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (1 − 𝑝𝑝𝑓𝑓𝑓𝑓) 𝑝𝑝𝑓𝑓𝑓𝑓� (32)

For the example with order-disorder the ideal mixing Gibbs energy becomes:

��� = � �
(

��1
Mg ln

(

��1
Mg

)

+ ��1
Fe ln

(

��1
Fe

)

+ ��2
Mg ln

(

��2
Mg

)

+ ��2
Fe ln

(

��2
Fe

))

� (33)

Using Equation 21, with three endmembers, the nonideal Gibbs energy becomes:

𝑔𝑔nid = (𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓 + (𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑜𝑜𝑜𝑜 + (𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑜𝑜𝑜𝑜� (34)

3.3.4.  Proportions From Site Fractions

The proportions can be written as function of site fractions by solving the system of equations in Equation 29 
using the independent equations and the fact that proportions sum up to 1. Starting from the equation that propor-
tions sum up to one, and adding sequentially only equations from Equation 29 that increase the rank gives a closed 
system of equations. This leads to:

1 = 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜

𝑧𝑧𝑀𝑀1

Mg
= 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜

𝑧𝑧𝑀𝑀2

Mg
= 𝑝𝑝𝑓𝑓𝑓𝑓

� (35)

Which after solving for proportions gives:

𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑧𝑧𝑀𝑀2
Mg

𝑝𝑝𝑓𝑓𝑓𝑓 = 1 − 𝑧𝑧𝑀𝑀1
Mg

𝑝𝑝𝑜𝑜𝑜𝑜 = 𝑧𝑧𝑀𝑀1
Mg

− 𝑧𝑧𝑀𝑀2
Mg

� (36)
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Hence, there are two independent site fractions together completely defining the composition and ordering of the 
olivine in this example.

3.3.5.  Proportions From Composition

From the olivine Table 4, we can derive a list of compositions of each endmember by summing up the moles of 
each atom over the sites.

Again, this table can serve to set up a system of equations and may be added by the constraint that the sum of the 
proportions equals 1 (first equation):

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1

2 0 1

0 2 1

1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

Mg

Fe

SiO4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (37)

However, this table only has two independent equations (rank = 2). We need another equation to solve for all three 
proportions. A simple solution may be to treat the ordered endmember as a known variable on the right hand side. 
Our extended system can be written:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1

2 0 1

0 2 1

1 1 1

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

Mg

Fe

SiO4

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (38)

Starting from the first required equation and adding equations until we have reached the rank of the matrix gives 
us directly the first 2 and the last equation. This means the set of independent equations becomes:

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1

2 0 1

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1

Mg

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

� (39)

The matrix in Equation 39 can be inverted and used to find the expressions for the endmember proportions as 
function of composition:

⎡

⎢

⎢

⎢

⎢

⎣

0 0.5 −0.5

1 −0.5 −0.5

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1

Mg

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

� (40)

Instead of varying the ordered endmember proportion, it is also possible to vary one of the site fractions. For 
example, we can have the site fraction of Mg on M1 as variable in addition to the compositional variables. This 
way, we can fix the bulk composition of the mineral while varying the site occupancies due to ordering. To this 
end, we add the equation for site fraction of Mg on M1 (Equation 1 in Equation 29), to the original system of 
equations:
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1

2 0 1

0 2 1

1 1 1

1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑓𝑓𝑓𝑓

𝑝𝑝𝑜𝑜𝑜𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

Mg

Fe

SiO4

𝑧𝑧𝑀𝑀1

Mg

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (41)

Here only the first, second, and last equation are independent and so we have:

𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜 = 1

2𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜 = Mg

𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑜𝑜𝑜𝑜 = 𝑧𝑧𝑀𝑀1

Mg

� (42)

Solved for the three unknown proportions:

𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑀𝑀𝑀𝑀 − 𝑧𝑧𝑀𝑀1
Mg

𝑝𝑝𝑓𝑓𝑓𝑓 = 1 − 𝑧𝑧𝑀𝑀1
Mg

𝑝𝑝𝑜𝑜𝑜𝑜 = 2𝑧𝑧𝑀𝑀1
Mg

− Mg

� (43)

These equations guarantee a fixed olivine composition, while changing the distribution of Fe and Mg on M1 
and M2. The site fraction equation that will describe this distribution, or the order-disorder, can be obtained by 
augmenting the system of equations in Equation 41 with the site fraction equations in Equation 29. Then from this 
complete set of equations, only the independent equations are selected starting from the first equation in Equa-
tion 41 and adding only equations that increase the rank of the system of equations. Defining as first equation that 
the sum of proportions add to one (first row in Equation 41), is convenient as it guarantees the minimum amount 
of compositionally independent variables. A MATLAB code that automates this procedure is used in Thermolab 
and detailed in Appendix A. This function gives the independent components for each solution model as well as 
the site fraction to vary as order parameter and the matrix of converting composition to proportion. A worked 
example for a more complex mineral, Amphibole with 11 endmembers is given in Appendix A. It is also possible 
to calculate site fractions from bulk composition as shown in the Appendix in Vrijmoed and Podladchikov (2015).

3.3.6.  Aqueous Fluids

For mixtures of aqueous species, an approach similar to the ideal olivine example can be taken. Treating the fluid 
mixture with a one-site model in which all species mix in a similar fashion the mechanical and ideal mixture is 
calculated as in Equations 19 and 20, and for the nonideality, the Helgeson Kirkham Flowers (HKF) extended 
Debye-Hückel activity is used (Dolejš & Wagner, 2008; Helgeson et al., 1981). The Gibbs energy of the fluid 
mixture is on a molality scale when the formulation of Johnson et al. (1992) and the HKF activity model (Helge-
son et al., 1981) is used and must be converted to a molar based scale to be compatible with the solids. This is 
taken care of by adding a correction term to the molality based Gibbs energy of the pure aqueous endmember as 
in Dolejš (2013):

𝑔𝑔0
𝑥𝑥 = 𝑔𝑔0

𝑚𝑚 +𝑅𝑅𝑅𝑅 ln

(

1

𝑀𝑀𝑤𝑤

)

� (44)

where 𝐴𝐴 𝐴𝐴0
𝑥𝑥 is the mole fraction and 𝐴𝐴 𝐴𝐴0

𝑚𝑚 is the molality based Gibbs energy, Mw is the molar mass of H2O. We note 
that in Equation 12, it is unspecified what concentration scale the Gibbs energy is based on. This information 
must be known a priori and the conversion above must be applied appropriately.
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4.  Equilibrium Calculations Using Reactions
Gibbs energies calculated with the Thermolab codes are benchmarked with THERMOCALC (Holland & 
Powell, 2011), SUPCRT92 (Johnson et al., 1992), the DEW spreadsheet (Sverjensky et al., 2014), or data and 
phase diagrams from the relevant publications (Miron et al., 2016) and Perple_X (Connolly, 2005). Additionally, 
comparing with experimental data is essential to increase confidence in the method.

With the Gibbs energies of endmembers, equilibrium conditions for simple reactions can be calculated. Results 
for several solid state and fluid-solid reactions are shown in Figure 2. The curves are produced by making use of 
the equilibrium condition:

0 = Δ𝐺𝐺0
𝑟𝑟𝑟𝑟𝑟𝑟 +𝑅𝑅𝑅𝑅 ln

(

𝐾𝐾eq

)

� (45)

Figure 2.  Example equilibrium calculations using a basic chemical reaction approach. (a) Examples of some well-
known reactions between pure phases, by calculating ΔG of reaction (including any metastable parts of reactions). (b) 
Solubility of aqueous silica, by plotting the equilibrium constant of the dissolution of quartz into water using the Holland 
and Powell (1998) database. Comparison between data from Manning (1994) shows good agreement between model and 
experiment. (c) Comparison between experimental data and the SUPCRT (dashed lines) and Miron (solid lines) data set for 
the dissociation of KCl in water. This reproduces the figure shown by Miron et al. (2016), to demonstrate their improved fit to 
the data. (d) Activity diagram at room pressure, temperature, for basic weathering reactions using the equilibrium constants 
of the reaction calculated with Thermolab using the (dslop98) SUPCRT aqueous species and minerals data and Gibbs 
energy of water from NIST. Here a procedure to remove metastable extensions of reactions is performed in an automated 
way (i.e., automated Schreinemakers analysis). Gbs = Gibbsite, Ms = Muscovite, Mic = Microcline, Kln = Kaolinite, 
Prl = Pyrophyllite, SiO2 (am.) = amorphous silica.
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with the change of Gibbs energy of the reaction given by:

Δ𝐺𝐺0
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜈𝜈 ⋅ 𝐠𝐠0� (46)

where the ν hold the stoichiometric coefficients in the reaction and g 0 are the endmember Gibbs energies of each 
phase in the reaction.

For pure phases (e.g., endmembers), the equilibrium constant Keq will be 1 and the logarithmic term disappears 
leaving only 𝐴𝐴 Δ𝐺𝐺0

𝑟𝑟𝑟𝑟𝑟𝑟  = 0. Using the endmember Gibbs energies and stoichiometric coefficient of reactions the 
contour line of 𝐴𝐴 Δ𝐺𝐺0

𝑟𝑟𝑟𝑟𝑟𝑟  = 0 can be plotted to visualize the reaction in P-T space (Figure 2a). In a simple dissolution 
reaction Keq will be equal to solubility and so we can use 𝐴𝐴 Δ𝐺𝐺0

𝑟𝑟𝑟𝑟𝑟𝑟 to calculate the solubility of quartz (Figure 2b). 
An example of a single dissociation reaction is shown in Figure 2c. By varying activities in Keq and using them 
as axis on a diagram the contour lines where the right hand side is 0 are used to obtain an activity-activity plot 
(Figure 2d).

5.  Gibbs Minimization in MATLAB
Using the ΔG of reaction, the metastable part of individual reactions will also be plotted (e.g., Figure 2a). For 
an equilibrium phase diagram, a Schreinemakers analysis or similar procedure may follow to draw the stable 
reactions (e.g., Figure 2d). Additionally, the phases and reactions to be calculated must be known beforehand. 
However, in many cases it can be desired to predict which reactions may take place. Instead of predicting the 
equilibrium line of a chemical reaction we calculate the stable phase assemblage at a point in P-T by determining 
which mineral has the minimum Gibbs energy. In the example code (Figure 3a), the calculation of Gibbs energy 
of the endmembers is done in line 9, a call to the main Thermolab function, which includes the code in Figure 1 to 
focus on the minimization algorithm. If all phases have the same composition (i.e., they are polymorphs), then the 
“min” function can be used (Figures 3a and 3b). Instead of locating the coexisting phases in a reaction in P-T-X 
space, the Gibbs minimization delivers the stable phases everywhere except for on the reaction line. Therefore, 
the reaction lines reflect the resolution of the P-T grid for which the Gibbs energies of each phase are calculated. 
At sufficiently high resolution, the reaction lines become smooth.

Natural chemical systems, for example, rocks, generally, are multicomponent systems. In this case, mass balance 
must be considered while finding the minimum of Gibbs energy. For a more thorough thermodynamic analysis 
of this, see for example, Connolly (2017). Constrained Gibbs energy minimization is employed in the majority 
of phase diagram calculation software (Connolly, 2009; Gordon & McBride, 1994). In MATLAB, the simplest 
way this can be achieved is using linear programming (function “linprog,” e.g., Dantzig et al., 1955). With this 
function, minimization can be done under the constraints of mass balance equalities, which for completeness is 
shortly outlined in the following.

The function “linprog” is used to find the minimum Gibbs energy of the system by solving the following optimi-
zation problem,

min
(

𝐺𝐺sys

)

= 𝐠𝐠 ⋅ 𝛼𝛼� (47)

where α and g are vectors of the molar amount and the Gibbs energies of all phases, respectively. The “linprog” 
algorithm then searches for the components in α that make the minimum Gibbs energy of the system, while 
respecting the following mass balance equality:

𝐧𝐧𝐬𝐬𝐬𝐬𝐬𝐬 = 𝐍𝐍𝐩𝐩𝐩𝐩𝐩𝐩 ⋅ 𝛼𝛼� (48)

where nsys is a vector of total moles of each component in the system and Nphs holds the molar composition of 
the phases as detailed below.

Equation 48 states that the sum of the amount of each phase multiplied by the composition of a component should 
equal the sum of that component in the system. A final requirement is that no negative amount α is allowed as 
that is physically meaningless:

� ≥ 0� (49)
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As a worked example we may consider the binary system SiO2-MgO. Possible phases that can be built from these 
components are quartz, periclase, enstatite, and forsterite. Spelled out for this case the equations read in matrix 
form:

Figure 3.  Two examples of Gibbs minimization to calculate phase equilibrium with Thermolab. The Gibbs energy calculation shown in Figure 1 is used here as a 
MATLAB function to improve clarity of the algorithm. (a) Code showing unconstrained Gibbs minimization used to calculate the aluminosilicate phase diagram. The 
Gibbs energies of the phases are obtained in line 9, using a unique identifier to distinguish them from the same phases in another database. Andalusite from the tc-ds55 
THERMOCALC (Holland & Powell, 1998) data set (and, tc-ds55), kyanite (ky,tc-ds55), and sillimanite (sill,tc-ds55) in the order in which they are specified in line 
5. The result is a 3D array with T in first dimension, P in second dimension, and phase in third dimension. Line 11 then finds the minimum in the third dimension, 
which results in a value (val) and index (ind) for each P-T. The index corresponds to the list of phases in line 5. (b) Resulting plot from code in panel (a). A color coded 
visualization of the phase index that gives the lowest Gibbs energy is shown using the pcolor function in MATLAB (code: line 13). The color bar indicates that the 
blue area has index 1, which then means it is the first phase in the list (line 5) that is stable (i.e., 1 = andalusite, 2 = kyanite, and 3 = sillimanite). The resolution of 
phase diagram can be increased by decreasing the step size of temperature and pressure (line 3 and 4). (c) MATLAB example to calculate chemical equilibrium using 
constrained Gibbs energy minimization. For the first lines see panel (a). In lines 7–9, the system composition is specified using total moles of SiO2 and MgO. Then the 
phase compositions in moles is expressed in the matrix Nphs with in each column the phase corresponding to the list in line 5. Each row holds the components (SiO2 
and MgO). This information is used as equality constraints in the function linprog which is called in line 14. It then finds the minimum Gibbs energy of the system out 
of the four possible phases, while satisfying the equality constraints. The second and third input arguments for “linprog” are empty as they are reserved for inequalities 
and the fourth and fifth arguments are for the matrix of coefficients and right-hand side vector, respectively. To restrict the linear programming search for the amount 
of each phase to positive values we input also the lower bound vector of zeros (LB), for example, Equation 49. Then alph will hold the amount of each phase that will 
make minimum system Gibbs energy while obeying system composition. The phases that have an alph above zero represent the equilibrium assemblage for the given 
P-T-X conditions. (d) G-X diagram in which the Gibbs energy of the phases are plotted against system composition (for plotting the Gibbs energy is normalized over the 
sum of the moles of component in each phase: i.e., the sum over the rows of Nphs).
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And
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Figure 3c shows the MATLAB translation and usage of “linprog” (Figure 3c, Line 14) to calculate the stable 
phase assemblage. The required known values for the minimization are the vector of Gibbs energies (Figure 3c, 
Line 6), a vector of system compositions (Figure 3c, Line 7) with matrix of mineral compositions (Figure 3c, 
Lines 10–12) as in Equation 51. Note that in Figure 3c single elements have been used as components instead of 
the oxides, which leads to the same result. After defining the lower bounds of alpha's as zero, linprog finds the 
alpha's that make the minimum of Gibbs energy. The results are plotted in Figure 3d and shows that for a system 
composition between enstatite and forsterite, alpha's of enstatite and forsterite are nonzero, which means that 
those are the stable phases and the magnitude of the alpha's give the molar amount of each stable phase in order 
of definition of the list of phases in Figure 3c, Line 5.

Performing a minimization at each point in a grid of pressure and temperature and evaluating at each P-T point 
the stable phase assemblage leads to a phase diagram in which also the amount of each phase is obtained from the 
mass balance constraint. Figure 4a shows that this produces the same result in case of the pure Al2SiO5 system, as 
in the unconstrained minimization, but that it can now be used to do multicomponent systems such as dehydration 
of antigorite in SiO2, MgO, and H2O (Figure 4b).

Most minerals, fluids, and melts are not just pure phases, but can form mixtures of endmembers. The basic 
example above is shown because essentially the Gibbs minimization approach used in Thermolab is the same 

Figure 4.  (a) One component system phase diagram, using constrained Gibbs minimization, results in a similar diagram 
to the unconstrained minimization result for the aluminosilicate phase diagram in Figure 3 (ky = kyanite, sill = sillimanite, 
and = andalusite). (b) Multicomponent system phase diagram, with pure phases, using components SiO2, MgO, and H2O. 
The same code is used as in panel (a), only the composition and system components need modification (atg = antigorite, 
fo = forsterite, ta = talc, and anth = anthophyllite).
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for systems in which phases occur that have a variable composition. In the following we shortly outline how we 
approximate the equilibrium in Thermolab to a reasonable degree by using the same linear programming method.

5.1.  Linearization of Mixtures

We compute the Gibbs energy of a set of discrete compositions of the mixture and add them to the list of 
endmembers as discrete entities, being treated as a fixed composition phase. In the following, all these entities 
that are the consequence of discretizing a real phase that can form a thermodynamic mixture will be arbitrarily 
called phase-compounds. With this approach the minimization algorithm remains unchanged from the above 
case for pure phases in Figure 3c. Figure 5 shows a complete code example to do a calculation with mineral solid 
solutions using the approach described here.

An important step in preparing the mixtures for Gibbs minimization is to generate a grid holding a set of  
discrete phase compositions representing the mineral, fluid, melt, or gas. The compositions need to cover the  
full range of possible site fractions or proportions that can exist for a mixture. Fixing the pressure and temperature, 
Gibbs energy can be calculated either by specifying the site fractions or the proportions. The simplest  
is to use the site fractions for grid generation because they range from zero to one. Using proportions is more 
complex because, although proportions sum up to one for each mixture, they can also be negative. Thus, it 
requires knowledge of the range of values for proportions in each different solution. The grid generation is done 
in the function call in Line 12, Figure 5, by varying the site fractions by default from 0 to 1, and generating a 
multidimensional Cartesian  grid  over the correct number of independent site fractions, using the MATLAB func-
tion “ndgrid”  inside.  With this brutal way, many nonphysical site fractions are generated, but these are removed 
inside the grid generation function. For example, on a crystallographic site with three site fractions, always 
one of them is dependent because the sum should equal one. So, there are two independent site fractions that 
both can vary between 0 and 1. When creating a Cartesian grid with “ndgrid,” it is possible to have a combi-

Figure 5.  Complete example code for the calculation of chemical equilibrium using Gibbs energy minimization including solid solutions, aqueous species, and 
pure phases in Thermolab for the case of serpentinite with addition of carbon (Beinlich et al., 2020). After defining a P and T of interest, the solution model Excel 
spreadsheet is selected (line 5). The chemical components in the system are defined in line 6 and the composition of the system is specified in line 7. The names of the 
phases to be considered in the calculation are specified in lines 8–10, where the tc-ds55 identifies the thermodynamic data set to be used (here THERMOCALC data set 
55). The static thermodynamic data (td) for all phases are loaded in line 11 and stored in one structure array (this replaces the command in Figure 1, line 10). The grid 
of compositions to linearize the solutions is obtained in line 12. Lines 13–14 compute the density (ZD05 = Z. G. Zhang & Duan, 2005) and dielectric constant of water 
(S14 = Sverjensky et al., 2014). Line 15 computes the Gibbs energy and volumes of the endmembers in each solution. Line 17 is the call to the main function outlined 
in Figure 1, and calculates for all phases in the list the Gibbs energy (g), the composition of each phase compound (Npc), an identifier for each phase compound (pc_id). 
Line 20 performs the constrained Gibbs minimization and in line 22 the data is stored for postprocessing.
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nation of the two independent site fractions being for example, 0.9 and 0.5. This is not a feasible composition 
because the sum of those fractions exceeds 1. So, all combinations in the grid that produced values with a sum 
of the site fractions above one are excluded. In summary, we just generate Gibbs energies for the full range of 
possible site fractions in the solution including all states of ordering and internal speciation. For amphibole or 
clinopyroxene  from  for  example, Green et al. (2016), only maximal 3–6 discrete compositions per dimension 
can  be  used,  when executed on a single PC. The resulting set of Gibbs energies and compositions is used in place 
of the example in Figure 3c. The call to the main code “tl_gibbs_energy,” in Figure 5 Line 17, now includes the 
complete Gibbs energy code example Figure 1.

As an example of including solutions, we show a variety of phase diagrams, all produced with the same code 
for a discrete set of P-T values. The first example in Figure 6a, applies the olivine solution model as described 
above together with a binary melt mixing model, replacing the solid endmembers with their liquid equivalents 

Figure 6.  (a) T-X diagram for the binary system fo-fa, with olivine and melt as mixtures using the Holland and 
Powell (2011) data set and solution model for olivine from Holland et al. (2018) and melt using the example from the 
text and by adapting the Margules parameters to fit the Bowen and Schairer (1935) experiments. (b) T-XCO2 diagram for 
CaO-SiO2-H2O-CO2 system at 14 kbar. Data points from Aranovich and Newton (1999) as benchmark to the Gibbs energy 
and minimization approach in Thermolab. (c) Benchmark KFMASH metapelite example using the composition from 
the code in Figure 5. Solution models: Chlorite (Holland et al., 1998), Chloritoid, Cordierite (Holland & Powell, 1998), 
Muscovite (Coggon & Holland, 2002), Garnet, and Biotite (R. W. White et al., 2007). (d) Basalt melting to benchmark the 
Holland et al. (2018) melting model by reproducing main topology in Figure 5 of Holland et al. (2018), here calculated in 
SiO2-TiO2-Al2O3-MgO-FeO-CaO-Na2O.
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(liquid forsterite and fayalite). For olivine, a grid is created where 𝐴𝐴 𝐴𝐴𝑀𝑀1

𝑀𝑀𝑀𝑀
 and 𝐴𝐴 𝐴𝐴𝑀𝑀2

𝑀𝑀𝑀𝑀
 vary independently and for the 

melt, the site fraction of forsterite liquid is varied. The Margules parameters in the melt are adjusted until they fit 
the experimental data (Bowen & Schairer, 1935). The T-X diagram including CO2 fluid using the mixing model 
of Aranovich and Newton (1999) is produced by changing the bulk CO2 in the system. When the amount of 
fluid components (H2O) in the calculation is orders of magnitude higher than the solid components, the diagram 
approximates the T-XCO2 diagram as the system is largely dominated by fluid. The results show good agreement 
with the experimental data from Aranovich and Newton (1999). A more complex calculation for a metapelite in 
KFMASH is done as a benchmark with the Perple_X and THERMOCALC diagrams and shows good agreement, 
improving the confidence of the method. Note that in complex systems, it becomes increasingly more demanding 
to get high-resolution phase diagrams. For example, a computation with the melt model of Holland et al. (2018) 
yields a low resolution diagram. Additionally, Cr2O3, Fe2O3, and K2O were omitted. However, the topology of the 
diagram is overall similar. In particular, the melt and pyroxene models used in the reproduction of phase diagram 
for basalt melting are computationally challenging with the method of linearizing the solutions with discrete 
hypothetical phase compounds.

5.2.  Postprocessing the Minimization Results

To precompute a lookup table for the local equilibrium the unknown variables need to be retrieved from the mini-
mization results. The results of multiple computations can be saved in one data set to be postprocessed separately. 
An example for one “linprog” result is given in Figure 7.

Using the discrete phase compound linearization approach, mixtures (solid solutions, fluids, melts, and gas 
mixtures) are split into individual phases having a fixed composition. The minimization algorithm will deter-
mine which of those discrete phases are stable, and for mixtures this often results in multiple discrete phase 
compounds with different composition of that mixture being stable. This is a mathematical consequence of solv-
ing the optimization program and the thermodynamic meaning is that we have a divariant field in which the 
composition of mixtures may change. Thermodynamically, it can happen that two or three phases are stable as a 
result of a miscibility gap. However, this needs to be determined by an algorithm that distinguishes the discrete 
phase  compound compositions from each other. If they are significantly different for a given resolution of the 
discretization, then  they are true separate phases. In the other case, the properties are obtained from a weighted 
average into one composition for the true stable phase. Afterwards, only the stable phase amount and the compo-
sition are retained. A clustering algorithm is used to determine if we have multiple or single phases stable for each 
particular mixture (Figure 7, Line 10).

Considering a given equilibrium calculation with linprog, the main result is a vector alpha, which holds the total 
amount of mole of each phase that has been considered in the system. The clustering algorithm first takes care of 
all distinct phases and removes any phases with zero alpha (i.e., those phases are found not stable by the linprog 
algorithm).

Mole fraction amount of the ith stable phase in the system is found by normalizing the molar amount of stable 
phase by the total:

�mol
� = ��

∑��
�=1 ��

� (52)

where np is the number of stable phases in this case.

Volume fraction ϕ of phase i is then found from molar volume and mole fraction amount:

�� =
�mol

� ⋅ � mol
�

φ��� ⋅ ����
� (53)

where the molar volume of each phase can be found using the numerical derivative of the Gibbs energy:
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Figure 7.
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The weight fraction of each phase is found from:

���
� =

�mol
� �mol

�

φ��� ⋅����
� (55)

in which the molar mass of all phases can be found by:

𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 ⋅ 𝐍𝐍𝐩𝐩𝐩𝐩𝐩𝐩� (56)

where molm holds the molar masses of the elements.

The density of phase i can then be computed:

�� =
�mol

�

� mol
�

� (57)

Composition in weight is found from:

��� =
��ℎ�molm
���� ⋅����� (58)

Properties for total rock and fluid can be found from

�� = ρ�� ⋅ φ��� (59)

where the vectors hold the densities of all solid minerals including both pure phases and solid solutions, and their 
volume fractions. Total solid concentrations are obtained from summing for each component the weight of all 
solids and dividing over the total weight. Note that Figure 7 presents a vectorized version of Equation 52 through 
Equation 59.

Chemical potential is calculated following:

𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑛𝑛𝑛𝑛 +
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
� (60)

where μnc is the chemical potential of the last dependent proportions (as proportions sum up to 1) and is calculated 
from:

𝜇𝜇𝑛𝑛𝑛𝑛 = 𝑔𝑔 −

𝑛𝑛𝑛𝑛−1
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
� (61)

6.  Improving the Calculations
Increasing the resolution of the P-T grid improves the smoothness of the lines in the diagram, but it does not 
ultimately lead to a better calculation. This is illustrated in Figure 8, where the resolution of the T-X grid for the 
olivine diagram is kept constant, while the number of discrete compositions for which the olivine and melt are 
calculated is increased. This means that the mixture is better approximated, and the result is that the composi-
tions and modal abundances become better resolved and the step-like behavior that is present in the calculation 
with lower compositional grid gradually disappears. Although this is feasible for calculations that involve one or 
two simple mixtures, like binary olivine and melt, the computational demand required for more complex chem-
ical systems and minerals makes such high-resolution compositional grids unpractical for computation. Even if 

Figure 7.  Code example of postprocessing results to prepare a lookup table for use in nonequilibrium processes, such as reactive transport. After loading the result of 
the minimization in lines 2–3, the molar masses of the components needed in the postprocessing are obtained from an external function in line 4. The cluster function 
in line 10 checks for each stable phase if the phase compounds are numerically distinct to distinguish exsolved phases. Lines 12–19 then calculate the densities and 
dielectric constants and Gibbs energy for the stable phase compositions at P of interest and a small deviation from P of interest for numerical derivatives. Molar volume 
using a numerical derivative of Gibbs energy is calculated in line 21. Lines 21–31 implement Equations 52–59 in the text to calculate phase abundances, composition 
and densities. Lines 33–51 calculate the chemical potentials for the components in the phases (Equations 60 and 61). From lines 56–59, the results are displayed on the 
screen as an example.
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Figure 8.
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computers with abundant memory are employed, we found that linprog will not find a solution for systems with 
more than 2 million discrete phases in the minimization.

Another option to improve the calculation is therefore to refine compositions in an iterative approach as also 
suggested and employed since decades (Connolly, 2009; Rossi et al., 2009; W. B. White et al., 1958). In Ther-
molab, this is open for the user to implement or improve. Here, we describe a simple approach that currently 
is employed as a working example. First, an initial minimization is done with a suitable compositional starting 
grid. This initial starting grid is also subject to possible modification and improvement; however, it is possible 
to simply set up a coarse resolution initial grid so that each minimization is fast. Each discrete phase which has 
an alpha above zero is recognized as a stable phase. And, the index in the list of nonzero alpha is used to find 
the composition of the mixture in terms of the endmember proportions and site fractions. In the next step, the 
proportions are used to generate a denser (i.e., higher resolution) compositional grid around the stable propor-
tions found in the first minimization. For a binary, a simple graphical explanation of this procedure in Thermolab 
is illustrated in Figure 9. The new higher resolution compositional grid is added to the already existing grid and 
taken to the next iteration. We checked that the Gibbs energy of the system is always decreasing during the iter-
ations. The iterations are stopped when the Gibbs energy of the system is not changing anymore within limits of 
machine-precision, or when the compositional spacing in the refined grid reaches this tolerance. A number of 
parameters are manually set by the user to control the initial refinement window, the number of refined discrete 
compounds generated, and the factor with which this window is decreased during each iteration. This leads to 
improved calculation of compositions, modal abundances, as shown in Figure 10 for the metapelite (KFMASH) 
P-T diagram from Figure 6c.

Figure 8.  Influence of resolution of the discretization of solutions on the quality of the thermodynamic calculations. T-X resolution is kept constant at 300 × 300 
steps. By increasing the number of compounds to discretize the mixtures, melt and olivine, the quality of the data is improved and the stepwise behavior disappears. 
The melt and olivine binary mixing curves are approximated with 15, 50, and 100 discrete compounds (n). (a) Fraction of melt with the melt and solid discretized 
with 15 compounds. (b) Melt composition (Xfo) corresponding to panel (a). Panel (c) as in panel (a), for n = 50 compounds. (d) Melt composition corresponding to 
panel (c). Panel (e) as in panel (a) with n = 100 compounds. (f) Melt composition corresponding to panel (e). (g and h) One-dimensional profiles for melt fraction and 
composition at Xsys = 0.5, (dashed lines in panels (a–f)). Improvement of calculation with higher number of compounds clearly visible by smoothening of the lines as 
resolution increases.

Figure 9.  Conceptual diagrams showing two steps in the refinement of the composition of mixtures. (a) Shows an initial minimization result which is then zoomed 
in and refined around the solution in step one. (b) Here the refined compositions are used for a second minimization with smaller compositional spacing between the 
discretized mixture, without increasing the number of discrete compounds, thereby avoiding using too much computer memory.
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7.  Investigating Nonlinear Transport Processes in Open Systems
Coupling local equilibrium thermodynamics to transport processes such as the system of equations introduced 
above has been discussed previously (e.g., Malvoisin et  al.,  2015). The method described here follows the 
approach employed in recent studies of Malvoisin et al. (2015), Plümper et al. (2017), and Beinlich et al. (2020). 
For the transport models a complete set of equilibria for all possible external conditions, T, P, X, may be precom-
puted and stored in a lookup table. To this end, loops over P, T, and X can be programmed around the linprog 
minimization and stored in a database. As an example, we show the soapstone formation in serpentinite from 
Beinlich et al. (2020). To the initial bulk serpentinite composition, carbon (C) is added to produce a lookup table 
of 150 different bulk compositions at fixed T and P. Employing the refinement method the Beinlich et al. (2020) 
thermodynamic calculations can be improved in smoothness and computation speed (Figures 12b, 12d and 12f). 

Figure 10.  Example of a phase diagram after refinement. The mineral modes in panels (a–e) show smooth variations within 
the phase fields due to sufficiently resolving the compositions of mixtures in an iterative refinement procedure. The final 
phase diagram in panel (f) shows also improvement, but the general topology was also captured in Figure 6c.
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However, the main results are the same. The important aspect is that the Beinlich et al. (2020) calculation was 
more robust, because no iterative refinement was used and hence any chance of reaching a local-minimum rather 
than the true minimum was avoided. Thus, the results of Beinlich et al. (2020) served as benchmark for the refine-
ment algorithm described above.

7.1.  Reactive Transport Example

Regardless of the assumptions or the numerical method used to solve the equations, the thermodynamic properties 
need to be calculated using either a computation on the fly, a precomputed lookup table (Malvoisin et al., 2015), 
or by parameterization (Tian, Katz, & Rees Jones, 2019). After retrieving the density of solid, fluid, and concen-
tration of fluid and solid, and the chemical potential, the system of equations described above can be solved. Here, 
a possible numerical implementation in MATLAB is shown (Figure 11), using explicit finite differences and a 
lookup table approach. The purpose is to focus on the concept of coupling the transport processes to the precom-
puted local equilibrium table to show how the effect of the nonideal solution models can be taken into account 
in reactive transport. The precomputed thermodynamic relationships are loaded in the beginning of the code. 
After setting up the physical and numerical parameters and defining a Cartesian grid the initial conditions. The 
simulation starts with a constant initial porosity distribution throughout the domain. Fluid pressure is initialized 
such that flow would start from the left boundary toward the right into the model. Initial solid concentration is 
chosen such that everywhere in the domain a serpentinite is stable and only the boundary on the left has a differ-
ent composition. Such that a fluid with a composition out of equilibrium with the rock on the right will enter the 
model. The fluid reacts with the initial rock to form new mineral assemblages progressively transforming the rock 
from the left to the right in the model.

The unknowns, ρf, ρs, 𝐴𝐴 𝐴𝐴 im
𝑠𝑠  , Cf, and μCf are found from interpolation in the lookup table at each time step (Figure 11, 

Lines 36–40) at a given P-T (0.3 GPa and 300°C). Here, the fluid only contains CO2 and for example, Mg can be 
used as immobile species in the solid 𝐴𝐴 𝐴𝐴 im

𝑠𝑠  to find porosity according to Equation 7. From this, transient permeabil-
ity and effective diffusion coefficient can be computed and used in the Darcy and diffusion fluxes. These are used 
in the total mass balance (5) and total mass concentration balance (1) to update concentrations and fluid pressure. 
In the example, the fluid pressure is found from finding the steady state solution of the total mass balance using 
an iterative pseudotransient method. The total mass concentration Ctot is found from an explicit finite different 
formulation. From this new Ctot, Equation 2 is rearranged to find the updated Cs. In the postprocessing stage the 
thermodynamic lookup table can also be used to find the modal abundances of the minerals to plot the evolution 
of the mineralogy through time.

Details of the coding example are found in the caption of Figure 11 and results of the transport code are shown 
in Figure 12. The nonlinearity of the thermodynamic relationship between solid and fluid composition is demon-
strated in Figures 12c, 12d and 12f. The shape of the curves is a result of both the nonideality of solution models 
as well as changes in the phase assemblage. Depending on the function of solid composition versus fluid compo-
sition, the reaction fronts behave very differently in terms of shape and velocity (Figures 12a, 12c and 12e). In 
the case that the incoming fluid composition is low in CO2 in equilibrium with antigorite, talc and magnesite 
no sharp fronts develop (Figure 12a) but modal abundance may change. When incoming CO2 fluid composition 
is higher and antigorite disappears from the system, a sharp reaction front propagates, and when the CO2 in the 
fluid increases further, talc also disappears and a second reaction front appears. The shape of the reaction fronts 
is controlled by the curvature of the Cf-Cs relation as well as the advection velocity versus speed of diffusion.

7.2.  Cahn-Hilliard Exsolution

Natural processes usually are not in equilibrium and do not strictly follow the path that can be followed from a 
phase diagram. Instead, there will be a process that develops toward the state of global equilibrium depicted on a 
phase diagram although it may never reach it (e.g., due to low temperature effectively arresting diffusion, or other 
kinetic effects). With Thermolab, the Gibbs energies can be directly used instead of first calculating thermody-
namic equilibrium and the process toward equilibrium can be modeled. A demonstration of this is given by solv-
ing the Cahn-Hilliard equations in which driving force for diffusion is chemical potential and an uphill diffusion 
process causes an initial random homogeneous system to develop into an equilibrium phase assemblage (Cahn & 
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Figure 11.
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Hilliard, 1958). A simplified version of the Cahn-Hilliard equation consists of a balance of mass concentration 
and a flux equation for the diffusion. Assuming a system without fluid, and assuming constant densities a basic 
mass concentration balance can be written (Figure 13, Line 36):

𝜕𝜕𝜕𝜕𝐴𝐴
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝜕𝜕𝑐𝑐𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
� (62)

where 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠  is the concentration of species A in the solid.

Flux of concentration in solid of a component can be defined as a function of gradients in chemical potential 
differences or a single chemical potential in conjunction with the Gibbs-Duhem relation (e.g., p. 80 in Lebon 
et al., 2008; Nauman & He, 2001), here the former is used (Figure 13, Line 35):

𝑞𝑞𝑐𝑐𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) = −𝐷𝐷𝑐𝑐𝑠𝑠 ⋅ 𝐶𝐶
𝐴𝐴
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) ⋅

(

1 − 𝐶𝐶𝐴𝐴
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥)

)

⋅

𝜕𝜕
(

𝜇𝜇𝐴𝐴
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) − 𝜇𝜇𝐵𝐵

𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥)
)

𝜕𝜕𝜕𝜕
� (63)

The chemical potential difference between species A and B in the solid, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠 − 𝜇𝜇𝐵𝐵

𝑠𝑠  , can be conveniently expressed 
by:

𝜇𝜇𝐴𝐴
𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) − 𝜇𝜇𝐵𝐵

𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥)
− 𝛾𝛾

𝜕𝜕2𝐶𝐶𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕2
� (64)

where the last term in Equation 64 is the interfacial free energy contribution as introduced by Cahn and Hill-
iard (1958). Similar to Figure 7, the chemical potential can be calculated with numerical differentiation of the 
Gibbs energy (see Figure 13, Lines 30–32).

These equations describe the spinodal decomposition of a phase with strong nonideal behavior, such as feldspar, 
due to nonlinear diffusion driven by chemical potential gradients. A useful review is found in Nauman and 
He (2001). See also caption Figure 14 for details.

8.  Discussion
The motivation behind the development of Thermolab is to study the effects of the nonideality of solution models 
in reactive transport processes in open systems. Most natural materials including minerals, rocks, melt, fluids, 
and gases display some degree of nonideal mixing behavior (e.g., Ganguly, 2020). We showed that for the case 
study of the soapstone formation studied by Beinlich et al. (2020) both the shape and the velocity of the reac-
tion front vary strongly depending on the nonlinearity of the partitioning of carbon between fluid and solid 
(Figure 12). For evaluating potential risks during transport of nuclear waste material understanding this nonlinear 
behavior is crucial and a study of Shao et al. (2009) is line with this conclusion.

For mathematical analysis, the formulation of complex solution models is important to show in a transparent 
manner such that nonlinearities in transport processes can be studied. Therefore we presented the linear alge-
braic approach that is used in Thermolab to compute Gibbs energy of mixing for arbitrary multicomponent 
phases (Figure 1). The starting point was a crystallographic or structural model of a solution and a predefined 
set of endmembers as developed by previous workers (e.g., Green et al., 2016; Palin et al., 2016). More in-depth 

Figure 11.  Reactive transport code using precomputed equilibrium approach. After loading the precomputed thermodynamic equilibrium data (line 3), the physical 
parameters are defined in lines 8–18, the numerical parameters (e.g., number of time steps and nodes in the model) are defined (lines 20–24). Preprocessing and 
initialization including setup of the grid and initial conditions are done in lines 26–33. Here an incoming fluid and fluid pressure increase is setup as left boundary 
to initialize reactive fluid flow from left to right. In Lines 36–40, all properties retrieved from local equilibrium are found by interpolating on the precomputed 
thermodynamic equilibrium data. Line 41 stores the initial condition for the nonmobile solid and the initial porosity distribution is set to a constant value (phi0 in line 
12). Line 43 is the definition of total concentration and mass density in the system (Equations 2 and 6). Averaging values used in fluxes defined between the nodes are 
calculated in lines 48–50. Lines 52–53 are the dynamic permeability and effective diffusivity, from Equation 4 used in driving forces for the reactive transport, flux of 
diffusion (qC), and Darcy flux (qD), Equation 3. Adaptive time steps, following Courant Friedrichs-Lewy stability criterion, are calculated in lines 55–57 to constrain 
numerical error propagation and maintain the stability of the numerics. Lines 59–64 are an iteration loop to solve the steady state of mass balance Equation 5. Lines 
66–67 are the explicit finite difference formulation of Equation 1. The solid concentration is found from the definition of total system mass concentration, Equation 2. 
Plotting takes place during model run every “nout” time steps until maximum time is reached. The phase abundances can be visualized when desired as they are 
interpolated from the lookup table (line 72) and do not enter any of the physics equations. Plotting of the mineralogical evolution is done in lines 73–76.
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Figure 12.
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discussion on how to define new crystallographic and speciation models for solid solutions is given by Myhill and 
Connolly (2021), after which the model should then be fitted to experimental data.

To ensure the reliability of the Gibbs energy calculation and equilibrium calculation methods, Thermolab is 
benchmarked versus phase diagrams and exemplified in use for reactive transport projects. Constrained Gibbs 
energy minimization is discussed following existing approaches (Connolly, 2005; W. B. White et al., 1958) and 
the results are then used to calculate equilibrium compositions and retrieve the so-called isotherm that can be 
used in a transport code.

The isotherm, introduced in chromatographic studies of metasomatism, is a relation between fluid and solid 
composition at fixed P-T (Hofmann, 1972). An approach in which the system is divided in solid and fluid 
and for which the mass conservations equations have been summed up to eliminate reaction source terms 
has proven very useful for reaction front propagation studies (Orr, 2005). Shape and velocity of propagat-
ing reaction fronts strongly depend on the nonlinearity of solutions models (Guy, 1993). The approach of 
precomputing the equilibrium compositions and using the results as an isotherm in the transport codes is 
useful to study the effects of the nonlinearity of solution models on reactive transport. As the studies of 
Hofmann (1972) and Guy (1993) focus on single phases, our results show this is functioning similarly on 
multiphase systems such as rocks. The steep reaction fronts act similar to isotherms with miscibility gaps 
(Fletcher & Hofmann, 1974), but the solid solutions are  responsible for the continuity of the isotherm across 
the “jump-like” curves. Previous studies usually introduced simple isotherms to study the behavior during 
transport. Thermolab has been motivated by the need to generate realistic flow functions using complex 
solution models.

Solid solutions with strong nonideal behavior result in phase separation due to nonlinear diffusion when 
combined with transport models. The Cahn-Hilliard model (Cahn & Hilliard, 1958) is used to stabilize the 
numerical solutions by introducing an energy penalty for generating surfaces between phases introduced by a 
surface energy parameter. This method is widely applied in material science (Nauman & He, 2001) and also 
some geological applications have been studied (Abart et al., 2009; Petrishcheva & Abart, 2009). For geolog-
ical materials other than feldspar, the behavior of such nonlinear diffusion systems can be further investigated 
with Thermolab.

Mixing of databases is possible in a flexible framework like Thermolab, however, it may not be recommended 
since internally consistent databases are not necessarily consistent among each other. Nevertheless, to use 
aqueous species in fluids together with most up-to-date solution models of minerals, the only possibility to date is  
to combine for example SUPCRT databases with Holland and Powell  (1998,  2011). It has been argued that 
such a combination may serve as a good approximation (Dolejš, 2013), when appropriate EOS and dielectric 
constant for water are used. However, refitting the aqueous species databases from SUPCRT in conjunction with 
mineral database of Holland and Powell (1998) is likely the more reliable approach to combine data sets (Miron 
et al., 2016, 2017).

Figure 12.  Snapshot of reaction fronts produced by influx of three different incoming CO2 fluid compositions from the left boundary into a serpentinite using the 
code in Figure 11. Concentration units are in elemental carbon weight fraction. For comparison all runs were stopped after the same duration. In all cases, the starting 
rock consists primarily of serpentine (here antigorite), with minor amounts of talc, magnesite, and dolomite. (a) If the incoming fluid composition lies below ∼0.005 
antigorite never completely disappears and a gradual reaction front forms transforming the serpentinite to ophimagnesite (magnesite-talc-serpentinite). (b) The 
equilibrium relation between Cf and Cs (i.e., the isotherm) shown in blue with the transient (current) Cf and Cs compositions plotted as red dots. (c) With an incoming 
fluid composition between 0.01 and 0.015, the pristine serpentinite to the right transforms into soapstone with a sharp reaction front when antigorite has reacted out. (d) 
The equilibrium relation between Cf and Cs (i.e., the isotherm). The steep slope at Cs between ∼0.045 and 0.052 is enlarged in the inset. Here antigorite disappears (the 
soapstone on the left in panel (c)), and the steepness of the slope on the isotherm causes a sharp soapstone front. The shallow slopes below Cs = 0.045 correspond to the 
transitional front where serpentinite is partially transformed to soapstone. (e) Development of an additional reaction front, forming listvenite (quartz-magnesite rock), 
as incoming fluid composition is now higher, ∼0.086 weight fraction dissolved carbon. (f) As the incoming fluid composition lies on another steep part of the isotherm, 
the listvenite front is also sharp. Inset shows the curvature of the isotherm corresponding to the listvenite stable assemblage. Endmember data from the tc-ds55 data set 
(Holland & Powell, 1998), solution models: CO2-H2O Fluid (Aranovich & Newton, 1999), Antigorite (Padrόon-Navarta et al., 2013), Chlorite (Holland et al., 1998), 
Talc (Holland & Powell, 1998), Magnesite, and Dolomite (R. W. White et al., 2003). t* = dimensionless time.



Geochemistry, Geophysics, Geosystems

VRIJMOED AND PODLADCHIKOV

10.1029/2021GC010303

33 of 44

Figure 13.  Cahn-Hilliard example code for 1D binary exsolution. The length of the domain and diffusion coefficient, assumed constant for simplicity here, are defined 
in lines 3–4, after which the thermodynamic data is loaded for a given P-T. The phase for which Gibbs energy is calculated is input in line 9, and the components in 
the system can be given in line 10. Line 11 initializes static thermodynamic data as in Figure 5. Line 12 calculates the Gibbs energy of the endmembers in the solution 
(this is done to increase performance as they do not vary here). Numerical parameters are setup in lines 14–18, followed by preprocessing for generating the grid and 
the time step. An initial setup consists of a homogeneous concentration with small random perturbations. The physical process is modeled in a time loop from lines 27 
to 38. Lines 28–31 show how Thermolab is used without precomputed lookup tables. A small increment of proportions of the endmembers is used to make a numerical 
derivative to calculate the chemical potential in line 32, with Cahn-Hilliard addition of energy regularization added in line 33, corresponding to Equation 64. The 
chemical potential gradients drive diffusion in the system via the diffusion flux in line 35, Equation 63 and line 36 is the mass concentration balance in simplified form, 
Equation 62. Lines 36–37 are boundary conditions that ensure total concentration in the system remains constant. Here, making the concentrations equal in a mass 
conservative way (using the mean of the three grid points on the boundary), the chemical potentials will be the same at these nodes and hence it will lead to no flux 
boundary condition. Lines 41–45 are plotting the results as the model runs. Line 48 visualizes the coarsening of the separate exsolved phases through time.
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9.  Conclusions
With Thermolab it is possible to reproduce published phase diagrams involving complex solution models and 
these solution models can then be used in transport codes to investigate the effects of nonlinearity on the open 
system processes. Complex flow functions can be retrieved from Thermolab and used in mathematical analysis 

Figure 14.
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and numerical models of reactive transport. Gibbs energy can be directly used to construct chemical potentials as 
a driving force for nonlinear diffusion leading to phase separation.

The modeling framework provided by Thermolab allows users to add custom functions, include new databases, 
design solution models and also improve procedures to calculate equilibrium. Limits of the discretization of solu-
tions approach are due to computer memory restrictions, which for complex solution models increases compu-
tation time to unpractical durations. Computers with increased memory would be a solution, however, we found 
that the linprog algorithm will stop to converge when about 2 million discrete phases or more in systems with 
more than six components are used. Refinement strategies are a potential solution to this problem; however, these 
compromise the robustness of the result by possibly missing the global minimum of the Gibbs energy. Thus, 
Thermolab leaves the door open for the development of faster and more robust future algorithms by a transparent 
open source coding environment, which due to the compactness of MATLAB example code can be translated to 
other programming languages with minimum effort.

Appendix A
An example of the automated selection of compositional or site fraction variables to calculate proportions for a 
mineral having 11 endmembers is given for amphibole:

From the site occupancy table, we obtain the following site fraction table by dividing each occupancy over the 
sum of moles on the site. For example, the M2 site reaches a sum of 2 mol when the Mg, Fe Al Fe 3, and Ti are 
summed. Then the moles of each occupancy are normalized by dividing by this sum to get fractions on the site. 
See Table A2 for the result.

Figure 14.  Example of using Thermolab without precomputed thermodynamic data. Physical processes develop toward thermodynamic equilibrium using the Cahn-
Hilliard model at 500°C, 0.1 GPa. The 1D example code for a binary system is given in Figure 13. An initially homogenous concentration distribution in a single 
phase develops into a two phase system due to uphill diffusion as a result of the nonlinearity of solution models (the nonideality that leads to exsolution of phases). 
(a) Snapshot of a 1D model during exsolution of binary feldspar (concentration corresponds to albite component in albite-sanidine mixture). Red line shows initial 
concentration distribution developing into separate phases represented by the blue line. (b) Comparing the concentrations in the physical domain to the Gibbs energy-
composition (X) curve (for clarity only the mixing energy, ideal + nonideal is shown). Plotting the transient concentrations on the equilibrium curve shows that the 
system develops toward the tangent construction (i.e., equilibrium condition) shown with the yellow line and calculated with “linprog” following methods described in 
the main text. (c) Albite concentration in a 2D feldspar model after exsolving for some time from a homogeneous initial distribution. Panels (d) and (e) represent the 
corresponding compositions of respectively, components anorthite, orthoclase (using sanidine endmember here). (f) Transient compositions of the feldspar for all nodes 
in the 2D domain plotted on the equilibrium mixing Gibbs-energy ternary represented by the contours (gid + gnid). These compositions form a continuous yellow line (as 
there are many overlapping symbols). Dashed line corresponds to solvus computed with “linprog,” and yellow open circle corresponds to average concentration in the 
system. Red symbols are equilibrium compositions of the two stable phases from Gibbs minimization.

Site A M13 M2 M4 T1 V

Occupancy v Na K Mg Fe Mg Fe Al Fe3 Ti Ca Mg Fe Na Si Al OH O

Endmember

Tremolite 1 0 0 3 0 2 0 0 0 0 2 0 0 0 4 0 2 0

Tschermakite 1 0 0 3 0 0 0 2 0 0 2 0 0 0 2 2 2 0

Pargasite 0 1 0 3 0 1 0 1 0 0 2 0 0 0 2 2 2 0

Glaucophane 1 0 0 3 0 0 0 2 0 0 0 0 0 2 4 0 2 0

Cummingtonite 1 0 0 3 0 2 0 0 0 0 0 2 0 0 4 0 2 0

Grunerite 1 0 0 0 3 0 2 0 0 0 0 0 2 0 4 0 2 0

Ordered Amphibole A 1 0 0 3 0 0 2 0 0 0 0 0 2 0 4 0 2 0

Ordered Amphibole B 1 0 0 0 3 2 0 0 0 0 0 0 2 0 4 0 2 0

Magnesio-riebekite 1 0 0 3 0 0 0 0 2 0 0 0 0 2 4 0 2 0

K-Pargasite 0 0 1 3 0 1 0 1 0 0 2 0 0 0 2 2 2 0

Ti-Tschermakite 1 0 0 3 0 0 0 0 0 2 2 0 0 0 2 2 0 2

Table A1 
Site Occupancy Table of Amphibole With Ordering of Fe-Mg on M13, M2 Sites
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The site fraction table can be transposed to form a set of equations in matrix form:
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⎢

⎢

⎢

⎢

⎢

⎢
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Site A M13 M2 M4 T1 V

Occupancy v Na K Mg Fe Mg Fe Al Fe3 Ti Ca Mg Fe Na Si Al OH O

Endmember

Tremolite 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0

Tschermakite 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0.5 0.5 1 0

Pargasite 0 1 0 1 0 0.5 0 0.5 0 0 1 0 0 0 0.5 0.5 1 0

Glaucophane 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0

Cummingtonite 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Grunerite 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0

Ordered Amphibole A 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0

Ordered Amphibole B 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0

Magnesio-riebekite 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0

K-Pargasite 0 0 1 1 0 0.5 0 0.5 0 0 1 0 0 0 0.5 0.5 1 0

Ti-Tschermakite 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0.5 0.5 0 1

Table A2 
Site Fraction Table of Multisite Amphibole With Ordering on Two Sites
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The system of equations describing the relation between proportion and site fractions that is obtained automati-
cally using the MATLAB script from Equation A1 is given in matrix form by:
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Figure A1 shows the MATLAB script used to retrieve the matrix in Equation A2 above.

And from the inverse of the matrix in Equation A2 above the proportions can be found as function of site 
fractions:
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Figure A1.  Example of automated method for determining independent compositional variables, site fractions, and order-disorder variables for an amphibole with 11 
endmembers (Green et al., 2016).
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Endmember proportions can also be obtained from the bulk composition using the table of moles of elements of 
the endmembers:

First, the composition table and transposed site fraction table (i.e., the matrix in Equation A1) are augmented 
along with the equation that proportions sum up to one (which forms the first equation in the set):

Element Si Ti Al Ca Fe Mg Na K H O

Endmember

Tremolite 8 0 0 2 0 5 0 0 2 24

Tschermakite 6 0 4 2 0 3 0 0 2 24

Pargasite 6 0 3 2 0 4 1 0 2 24

Glaucophane 8 0 2 0 0 3 2 0 2 24

Cummingtonite 8 0 0 0 0 7 0 0 2 24

Grunerite 8 0 0 0 7 0 0 0 2 24

Ordered Amphibole A 8 0 0 0 4 3 0 0 2 24

Ordered Amphibole B 8 0 0 0 5 2 0 0 2 24

Magnesio-riebekite 8 0 0 0 2 3 2 0 2 24

K-Pargasite 6 0 3 2 0 4 0 1 2 24

Ti-Tschermakite 6 2 2 2 0 3 0 0 0 24

Table A3 
Table of Bulk Chemistry of Endmembers in Amphibole
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The automatic selection of independent compositional variables and independent site fractions to describe order-
ing in the mineral starts from taking the first equation and adding from the top down only the equations that 
increase the rank of the system until the rank of the selected system of equations equals the number of endmember 
proportions. For Equation A4 above, this results in the following system of equations:
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