

Freie Universität

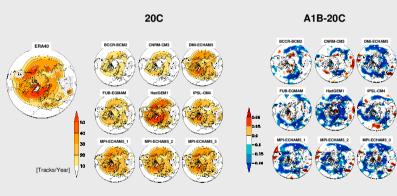
# Occurrence of extratropical cyclones and windstorms in multi-model simulations for recent and future climate

M. Donat, G.C. Leckebusch, J.G. Pinto(1) and U. Ulbrich (contact: markus.donat@met.fu-berlin.de) (1) Universität zu Köln

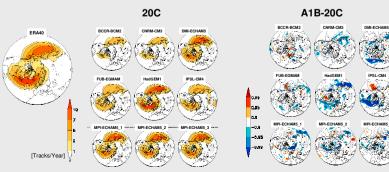
#### 1. Motivation / Objective

Cyclone tracks, extreme wind speeds and storm loss potentials are analysed in an ensemble of climate model simulations in order to

- Estimate changes of cyclone activity and occurrence of extreme wind speeds under ACC


- Obtain a range of possible changes with increased GHG forcing

- Address uncertainties arising from different signals in different models

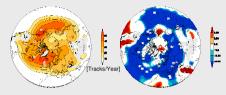

Analysis are performed for ERA40 reanalysis and an ensemble of 9 GCM simulations for 20th century (20C) and the 21st century following the SRES A1B scenario (A1B), following the ENSEMBLES-Project setup

#### 2. Cyclone Tracks in individual simulations

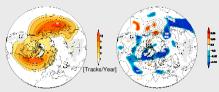
a) Track Density of all cyclone systems (tracking after Murray & Simmonds, 1991; Pinto et al., 2005)



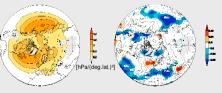
### b) Track Density of extreme cyclones (strongest 5% with respect to $abla^2 p$ )



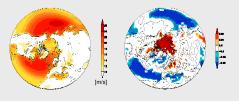

(Plots of climate change signals: difference A1B-20C is displayed by contour lines, coloured areas indicate the level of statistical significance (Student t-test))


#### 3. Ensemble Mean

Ensemble means for different parameters are calculated by equally weighting all regarded GCM simulations.


#### a) Track Density of all Cyclone Systems




b) Track Density of extreme Cyclones (strongest 5%)



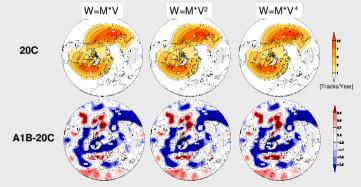
c) Mean Intensity of Cyclones (  $abla^2 p$  )



d) 98th percentile of daily max. wind speed



References: Murray and Simmonds (1991), Aust Met Mag 39:155-166 Pinto et al. (2005), Meteorol Z 14:823-838


#### 4. Weighted Ensemble Mean

Weighting factors are based on the ability of each model to reproduce the present day climatology.

## a) Spatial correlation of mean track density and variance GCM vs. ERA40

|            | DMI  | BCCR | CNRM | FUB  | Had-<br>GEM1 | IPSL | MPI1 | MPI2 | MPI3 |
|------------|------|------|------|------|--------------|------|------|------|------|
| MEAN M     | 0,94 | 0,88 | 0,87 | 0,90 | 0,93         | 0,81 | 0,94 | 0,94 | 0,94 |
| Variance V | 0,82 | 0,79 | 0,71 | 0,75 | 0,76         | 0,69 | 0,74 | 0,75 | 0,74 |
| W=M*V      | 0,77 | 0,70 | 0,62 | 0,68 | 0,71         | 0,56 | 0,70 | 0,71 | 0,70 |
| W=(M*V)2   | 0,59 | 0,49 | 0,38 | 0,46 | 0,50         | 0,31 | 0,49 | 0,50 | 0,49 |
| W=(M*V)3   | 0,46 | 0,34 | 0,24 | 0,31 | 0,36         | 0,18 | 0,34 | 0,36 | 0,34 |
| W=(M*V)    | 0,35 | 0,24 | 0,15 | 0,21 | 0,25         | 0,10 | 0,24 | 0,25 | 0,24 |

#### b) Weighted Ensemble Mean of extreme cyclones



#### 5. Summary and Conclusions

Considered GCMs reveal partially different signals with increased GHG forcing
Majority of models shows largely reduced number of cyclone systems, whereas number of extreme cyclones over NE-Atlantic is increased in most simulations

- Ensemble Mean (with equal weights for all models) reveals
- decrease of cyclone track density in large areas of Northern Hemisphere
- slightly significant increase of extreme cyclones track density over northeastern parts Atlantic and Pacific Ocean
- increased mean intensity of systems over north-east Atlantic
- higher extreme wind speeds over parts of northern Central Europe
- lower extreme wind speeds over Southern Europe
- A weighted ensemble mean (favouring models which are able to better reproduce the present day climatology) reveals a higher significance of signals e.g. for extreme cyclones track density