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ABSTRACT: The Middle Archean Moodies Group (ca. 3.22 Ga), Barberton Greenstone Belt, South Africa, exposes one of the world’s oldest ecosystems.

It includes kerogen-rich laminae and thin chert bands interbedded with coarse-grained and gravelly sandstones. The strata record a medium-energy, tidal

coastal environment. Analyses of the microscopic structure and chemical composition of the chert bands through petrographic microscopy, Raman

microspectroscopy, laser-induced breakdown spectroscopy (LIBS) analyses, C isotopes, and scanning electron microscope (SEM) photography of

macerated material, supported by textural observations of hand samples, suggest that these laminae represent variably compressed and early-silicified

microbial mats.

Internal wavy laminations, amorphous carbon composition, and negative d13C values strongly imply a biogenic origin. Complete HF maceration of

chert bands revealed polygonal cell structures in a formerly extracellular polymeric substance matrix. The tuft- and dome-micromorphology of the

laminations resembles that of recent photosynthetic filament-dominated microbial mats. Facies interpretations indicate that microbial mats extensively

colonized subtidal to intertidal Archean siliciclastic coastlines.
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INTRODUCTION

One of the most controversial issues in geobiology is the distinction
between sedimentary structures of biogenic and abiogenic origin in
Archean rocks (Altermann 2001, Altermann and Kazmierczak 2003,
Brasier et al. 2006). Because pervasive physical and chemical
alteration has widely affected the Archean sedimentary record, care
must be taken to document the evidence for biogenicity of the oldest
microorganisms, their metabolisms, and their interaction with the geo-,
hydro-, and atmosphere. Whereas shallow-water microbial communi-
ties have been described from cherts, carbonates, and silicified
evaporites of the ca. 3.4 Ga Strelley Pool Formation of Australia’s
Pilbara Craton (Ueno et al. 2001, Allwood et al. 2007, Marshall et al.
2007, Sugitani et al. 2010), the occurrences described here from the
3.22 Ga Moodies Group of the Barberton Greenstone Belt, South
Africa, constitute the world’s oldest known mappable biofacies in a
shallow-water siliciclastic environment (Noffke et al. 2006, Heubeck
2009, Javaux et al. 2010). We here present field, microscopic,
spectroscopic, and geochemical observations from the Moodies Group
sandstones. Our results suggest that thick and resilient microbial mats
may have been widespread in siliciclastic sub- to intertidal settings
along flat Archean coasts.

REGIONAL GEOLOGY AND DEPOSITIONAL
SETTING OF THE MOODIES GROUP

The ca. 3.5 to ca. 3.1 Ga Barberton Greenstone Belt (BGB; Fig. 1) of
South Africa and Swaziland is one of the world’s oldest well-preserved
Archean greenstone belts. The BGB fill comprises the NE-SW–striking
Barberton Supergroup (Brandl et al. 2006), which consists of, from
base to top, the Onverwacht, Fig Tree, and Moodies Group
(Anhaeusser 1976).

The Onverwacht Group is composed of predominantly ultramafic

and mafic volcanic rocks, including felsic pyroclastic and volcani-

clastic rocks and chert, while the Fig Tree Group mostly represents a

deep- to shallow-marine environment and consists of graywacke, shale,

FIG. 1.—Geological sketch map of the Barberton Greenstone Belt

(modified after de Ronde and de Wit 1994). Moodies Group strata

occur in large synclines. The study area is located on the overturned

southeastern limb of the Saddleback Syncline, marked by a black

rectangle.
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banded iron formation, chert, basaltic lava, and ash-fall tuffs. The
overlying Moodies Group mainly consists of lithic, feldspathic, and

quartz-rich sandstones, which are locally interbedded with conglom-

erates, and reaches ;3200 m thickness in the Eureka Syncline. Shale,

siltstone, volcanic units, and jasper are rare (Hall 1918; Visser et al.

1956; Anhaeusser 1975; Eriksson 1977, 1978, 1979, 1980; Heubeck

and Lowe 1994a, 1994b; Heubeck and Lowe 1999; Lowe and Byerly

2007). Moodies strata (Fig. 2) were deposited in alluvial, fluvial,

deltaic, tidal, and shallow-marine environments. They record the

erosion of quartz-rich plutonic source rocks for the first time in Earth’s
history.

At several Moodies outcrop localities, well-preserved tidal bundles

attest to an excellent degree of temporal resolution of the rock record at

outcrop scale (Eriksson and Simpson 2002, Eriksson et al. 2006).

Heubeck and Lowe (1994a) interpreted petrographic and textural

trends in the lower Moodies Group as passive-margin– or rift-related

environments, while the composition and architecture of the upper

Moodies Group were interpreted as a response to syndepositional up-

to-the-north faulting along the northern margin of the BGB, incipient
basin uplift, and inversion in the context of overall greenstone belt

shortening. Moodies sedimentation began between 3.225 and 3.222 Ga

and may have been only a few million years in duration (Heubeck and

Lowe 1994a, Heubeck et al. 2010).

SETTING AND MACROSCOPIC STRUCTURES
OF MICROBIAL MATS

Moodies Group strata dip steeply to subvertically on the overturned

limb of the Saddleback Syncline in the central BGB (Fig. 1). There,

FIG. 2.—Standard stratigraphic column of the ;3200-m-thick Moodies

Group of the Saddleback Syncline (Ohnemueller et al. 2010),

including the sampled unit MdQ1 near its base. Anhaeusser (1976)

defined the MdQ1 unit lithologically as coarse- and medium-

grained, shallow-water, immature, quartzose sandstones.

FIG. 3.—Detailed stratigraphic column of the studied area. Unit MdQ1

can be subdivided into at least four members (cf. Table 1). Facies

are deepening-upward and represent a transition from terrestrial

coastal environment (member 1) to a nearshore facies (member 4).

Microbial mats are present in members 1, 2, and 4 and are absent in

member 3. All strata show a NW-SE trend and dip subvertically at

approximately 708.
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feldspathic and quartzose sandstones (unit MdQ1 of Anhaeusser
1976), with subordinate conglomerates, reach several hundred meters
in thickness (Fig. 2) and include the microbial mat features described
herein.

Unit MdQ1 (Fig. 2, bracket), ;300 m thick, is largely silica
cemented, crops out resistantly, and can be followed over 11 km along

strike. It marks a fluvial–marine transition (Eriksson et al. 2006).

Siltstone, shale, or sedimentary structures related to suspension settling

or desiccation and indicative of a low-energy environment (Eriksson

1978, 1979; Eriksson et al. 2006; Noffke et al. 2006) are absent. Noffke

et al. (2006) described wrinkle structures and a single roll-up structure

interpreted as a microbial mat from a stratigraphically equivalent

section in the adjacent Dycedale Syncline. Javaux et al. (2010)

documented large (;31–300 lm) organic-walled spheroidal micro-

fossils in gray shales and siltstones from subsurface samples of the

lower Moodies Group.

Detailed mapping (1:2500 scale) of a well-exposed part of unit

MdQ1 in the Saddleback Syncline, extending approximately 2 km

along strike, demonstrates that the mapped area includes four

members, likely representing terrestrial coastal, low-angle shoreline,

intertidal to subtidal, and nearshore facies (Fig. 3; Table 1). This study

TABLE 1.—Sedimentary characteristics of the principal mapped units at the top of unit MdQ1.

Member Lithology Sedimentary structures Facies interpretation

4 (top) medium- to coarse-grained

sandstone

- thin (1–3 mm), wavy, dark-green laminations with

tuft and dome morphology

- fluid escape structures

- parallel stratification

nearshore (5–15-m water depth)

3 medium-grained sandstone - large-scale cross-bedding (height ;2 m)

- rare small-scale low-angle cross-bedding (height

;20 cm)

nearshore (5–10-m water depth)

2 medium- to coarse-grained

sandstone, microbial-chip–

clast conglomerate

- thin chert bands

- parallel stratification

- shallow but wide erosional scours

subtidal to intertidal

1 (base) medium- to coarse-grained

sandstone with single-clast

gravel bands and single clasts

- small-scale low-angle cross-bedding

- wavy, dark-green laminations, chert bands

- single-clast bands (diameter 2–4 cm)

- gravelly to pebbly conglomerate stringers

- fluid escape structures

- ripples and cross-beds

- parallel stratification

terrestrial coastal

FIG. 4.—Outcrop photograph of Moodies medium-grained sandstone

with indistinct, closely spaced crinkly laminations separating thin

sand beds of varying grain size. Chert bands weather white and

resistantly; they grade into the crinkly laminations and are parallel

to bedding surfaces.

FIG. 5.—Black chert band, ;4 mm thick, associated with abundant thin

wavy (‘‘crinkled’’) laminations in a medium-grained sandstone of

likely tidal to subtidal facies. Chert bands commonly (but not

exclusively) occur on top of coarse-grained sand lenses. On a

microscale, they show a convolute contact to the sand lens below

but a smoother contact to overlying fine- to medium-grained

sandstone (see also Fig. 6).
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focuses on abundant, closely spaced, dark-green-weathering, crinkly
and anastomosing laminations in the inter- to subtidal facies (member
2) and to a lesser degree in members 1 and 4 (Heubeck 2009) of the
mapped area. Many crinkly laminations pass laterally into thin, black
chert bands. The occurrence of these chert bands is mostly restricted to
the shoreline facies (Table 1).

METHODS

For assessing textural relations, slabs of fresh biolaminated
sandstone samples with chert bands were cut perpendicular to the
bedding and polished. Thin sections were prepared to identify
petrographic composition and to study the internal morphology of
the chert bands.

Carbonaceous material was identified using a scanning electron
microscope (Zeiss Supra 40VP). One thin section and several small
(size ;2 by 2 by 1 cm) chips were polished with silicon carbide and
cleaned in distilled water using an ultrasonic bath. After flaming with
alcohol in order to remove organic contaminants, sample chips were
bathed in HCl to remove carbonates and then etched for 6, 10, 15, 20,
or 30 minutes in 5% HF. Additional samples were partly (28 days) or
completely (48 days) macerated in 50% HF, including two hot
applications. HCl-washed residual material was heavy-liquid separated
using ZnCl2 (1.88 g/cm3) to remove all nondissolved heavy minerals.
This step was preceded and followed by fine sieving through 7-lm-
mesh tissue. All samples were coated with gold prior to scanning
electron microscope (SEM) analyses.

Molecular mapping experiments were conducted directly on the
polished surface of the thin sections with a Raman microscope
(LabRAM HR800, Jobin Yvon, Bensheim, Germany; Olympus BX41
microscope) equipped with an argon ion laser at an excitation
wavelength of 488 nm (Melles Griot, Aalsbergen, Netherlands).

The elemental mapping on surface-polished chips was performed by
laser-induced breakdown spectroscopy (LIBS). The experimental
design has been described by Hoehse et al. (2009). In brief, a
frequency-doubled pulsed Nd:YAG laser (Surelite II, Continuum,
Germany) is focused on the sample. Some hundred nanograms of
matter are evaporated and heated, followed by plasma generation.
Plasma emission is collected with an Echelle spectrometer (Aryelle
Butterfly, LTB Lasertechnik Berlin GmbH, Germany) in the range of
290 to 930 nm.

FIG. 6.—Photomicrograph of black chert band, 4 to 7 mm thick

(center), perpendicular to bedding between medium- and coarse-

grained sandstone at the top and bottom, respectively. Note multiple

and parallel crinkled laminations defined by opaque matter.

FIG. 7.—SEM photographs of partially macerated chert bands, exposed to 40% and 50% HF for 28 days. Observed structures are still partly

embedded in silica matrix. The photographs show three-dimensional networks of likely microbial-mat origin, largely composed of polygonal

cells with a diameter of ;1 to 2 lm. Some cavities are in part rounded, suggesting a biological origin; others are in part angular and may

represent originally ‘‘floating’’ and now dissolved siliciclastic grains.
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For carbon isotope analyses (d13Corg), 16 rectangular chips of 1 to 2
cm3 volume each were cut from chert bands in sandstone with a thin
water-cooled saw blade to avoid chemical alteration of the chert band
composition due to sample heating. The samples also included some
sandstone material, whereby sandstone samples free of chert bands
were also measured. All samples were washed in alcohol, dried, and
ground to powder using an agate mill. Stable isotope analysis and
concentration measurements of organic carbon were performed with a
THERMO/Finnigan MAT V isotope ratio mass spectrometer, coupled
to a THERMO Flash EA 1112 elemental analyzer via a THERMO/
Finnigan Conflo III-interface in the stable isotope laboratory of the
Museum für Naturkunde, Berlin. Stable isotope ratios are expressed in
the conventional delta notation (d13C) relative to VPDB (Vienna
PeeDee Belemnite standard). Standard deviation for repeated mea-
surements of laboratory standard material (peptone) is generally better
than 0.15 per mil (ø). Standard deviations of concentration
measurements of replicates of the laboratory standard are ,3% of
the concentration analyzed.

Electron microprobe imaging of rhythmically laminated chert bands
was conducted with a JEOL JXA 8200 Superprobe at the Department
of Geological Sciences at 15 keV accelerating voltage using the
backscatter-electron imaging (BSE) mode.

RESULTS

Silicified Patchy Microbial Mats (Chert Bands)

Chert bands always grade from and into green crinkly laminae. They
occur parallel to the bedding plane but are also involved in deformation
by fluid escape structures, suggesting a plastic constitution. Chert
bands weather resistantly (Fig. 4). Field observations indicate that chert
bands generally vary in thickness from 0.1 cm to 0.8 cm (mean 0.3 cm)
and reach 4 to 88 cm in length (mean 27 cm). We found no relationship

between thickness or length and the stratigraphic position of individual

chert bands. Chert bands appear to have preferentially grown above

small channel-fill lenses of well-sorted, coarse-grained sandstone.

They are in turn sharply overlain by medium- and fine-grained

sandstone (Fig. 5).

In thin section, black chert bands consist of several parallel,

intensely deformed thin laminations of opaque matter embedded in and

separated by a microquartz matrix (Fig. 6). Commonly, single sand

grains are observed ‘‘floating’’ surrounded by laminated chert.

HF Etching and Maceration

After 28 days of maceration, the remaining organic material from the

chert band samples showed polygonal structures (Fig. 7a–c) and

cavities (Fig. 7d) with diameters of ;1 to 2 lm when observed under

the SEM.

Substantial quantities of organic material remained after complete

maceration of the chert bands. They mostly consisted of pseudo-

polygonal chips of uniform thickness of 15 to 20 lm (Fig. 8). These

were internally laminated and showed a membrane-like construction.

Chip margins were smooth and appeared plain; surfaces were plane or

bulbous. The interior of the chip was split by fractures. No partial cell

structures or parts thereof were observed.

Raman Spectroscopy

The obtained spectra showed similarities with those of graphitic

carbon (Fig. 9a). Colors (Fig. 9b) represent Raman intensities of

amorphous carbon. The size, shape, and location of the high-intensity

C band on the Raman intensity map (Fig. 9b) correspond to the dark

band seen under the petrographic microscope.

FIG. 8.—SEM images of carbonaceous fragments remaining after chips of dark chert were completely macerated using 50% HF for 48 days. (a)

Homogeneous chip of microbial mat of 10 to 20 lm thickness. Cracks are likely artifacts due to sample preparation. (b–d) Fragments of

carbonaceous material from a chert band. The thickness and shape of the chips are consistent with those of the dark carbonaceous wisps within

the chert bands observed in thin section (Fig. 6). Surfaces of microbial mats under SEM are smooth and bulbous; cross-sectional views show

faint internal horizontal lamination resulting from varying porosity.
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Organic Carbon Isotopes

The d13Corg values correspond to the proportion of chert bands in
each chip of a bulk-analyzed sandstone-chert sample. Four samples
were analyzed and broken into two to five chips each. Figure 10 shows
the results from the four chips of sample No. 3. The chip with the
highest proportion of chert (upper right) yielded the lowest d13Corg

value and vice versa. This suggests that material with isotopically light
C is concentrated in the chert band. The other three samples yielded
similar results (Table 2).

Spatial Distribution of Elements

Elemental intensity maps (Fig. 11) clearly demonstrate the
mineralogical difference between the chert band and adjacent
sandstone by relative enrichment of Li, Mg, and Rb in the sandstone.

Microprobe Imaging

Electron microprobe BSE imaging of multiply laminated black chert
showed virtually no backscatter contrast between phases that were
clearly discernible in thin section (Fig. 12). Where weakly defined in
the BSE image, the laminae appear to be marked by subtle variation in
quartz content, which suggests minor differences in cementation.
Isolated very small patches of high contrast (black in Fig. 12) are likely
pyrite, which was also found by Raman microscopy.

DISCUSSION

Primary Organic Origin and Microscopic Inferences

Our integrated analysis from micrometer (microscopic) to meter
(outcrop) scale indicates that the thin laminations within the chert
bands are products of Archean microbial mats. The carbonaceous
matter in the investigated samples is clearly of primary biogenic
origin. There was no observed indication of remobilization,
migration, or neomorphism of the organic matter. An abiogenic
origin of the crinkly laminations, be it by low-grade alteration or as
carbonaceous stylolites, appears highly unlikely because there is no
evidence of compaction, evaporitic dissolution, pressure shadow
formation, or secondary crystal growth near and in the laminae.
Tectonic fabrics are also absent.

The bulbous and domal morphology of the thin, wavy, closely
spaced laminations in Moodies sandstones (Fig. 5) resembles that of
recent photosynthetic filament–dominated microbial mats in silici-
clastic environments (cf. Gerdes et al. 2007 in Schieber et al. 2007).

SEM images (Figs. 7, 8) show structures consistent in shape and size

FIG. 9.—(a) Cutout of a Raman spectrum, showing G, D1, and D2

bands. The G (‘‘graphite’’) peak represents the band distinctive for

graphite. The prominent D (‘‘disordered’’) peaks (D1 and D2) refer

to the crystallite size of carbonaceous material (Pasteris and

Wopenka 2003).

FIG. 9.—(b) Photomicrograph of chert band with wisp of dark matter (rectangle; left) and corresponding Raman map of the G band at 1585 cm�1

(right). Color scale represents Raman intensities of amorphous carbon. The shape of the anomaly and the corresponding values indicate that

the dark wisps consist of organic carbon.
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with cells, cell membranes, and former extracellular polymeric

substance (EPS). They morphologically resemble coccoid cyanobac-

teria from Neoarchean carbonates (Kazmierczak et al. 2009).

Therefore, these structures are believed to represent early-silicified

cell-wall fragments from mat-building organisms. No structures

representing filamentous bacteria were observed.

Early Diagenesis and Selective Preservation

Laboratory experiments (Orange et al. 2009) demonstrated that

silicification of selected living Archaea (Methanocaldococcus janna-

schii, Pyrococcus abyssi) in a simulated hydrothermal environment

preserved cells of P. abyssi but not M. jannaschii and incorporated the

former gradually in silicifying EPS. By analogy, this experimental

outcome may indicate that the Archean microbial community studied

here may be similarly complex. This is also consistent with the

variation of d13Corg (Fig. 10) in the sandstone-chert bulk sample and

the variable cell morphologies (Fig. 8).

The scarcity of cell structures, concurrent with high Raman

intensities of amorphous carbon from chert bands, suggests that the

crinkled laminations in Moodies sandstone may represent silicified

EPS with diffuse organic carbon. The paucity of grain-to-grain

contacts in thin section and the general lack of a diagenetic fabric

indicate an early silicification prior to compaction. Because the

silicification is not locally restricted but occurs laterally and in

several units of the Moodies Group over several kilometres of strike

length, a hydrothermal contribution to the silicification process

seems unlikely. Silicification was presumably triggered through

amorphous-silica–saturated seawater interacting with organic mole-

cules at the seawater–sediment interface, possibly aided by anaerobic

bacterial decomposition of organic matter (Lowe and Byerly 1999).

High Li, Mg, and Rb values in the sandy host rock material, shown

in the LIBS maps, are relative enrichments expected for K-feldspar–

and mica-bearing sandstones. Their strong relative depletion in the

chert bands attests to the near-absence of postdepositional geochem-

ical reequilibration.

IMPLICATIONS

The crinkled laminations and chert bands in Moodies Group
sandstones represent the oldest well-preserved widespread siliciclastic
Archean microbial mats. The structures preserved in chert bands likely
represent former cells or cell fragments and EPS and pass the criteria
for syngeneity and biogenicity (Altermann 2001, Altermann and
Kazmierczak 2003, Brasier et al. 2006). Associated sedimentary
structures can be field-mapped over extensive distances and correlate
with facies changes and environmental gradients (e.g., water depth,
nutrient levels; Heubeck 2009). At hand sample scale, Corg-coated
surfaces form complex, similarly shaped domal and bulbous forms,
which interact with current-shaped sedimentary structures, suggesting
plastic behavior, which is common for microbial communities. SEM
photographs show fossil cell morphologies; carbon isotopic analyses
suggest the presence of biologically mediated material and the absence
of minerals commonly formed during hydrothermal or tectonic
processes.

Selective preservation of cell structures, variability of d13Corg in bulk
samples, and the macroscopic morphological variety of the crinkly
laminae, in combination with evidence for adaptation to highly variable
sedimentary dynamics (Heubeck 2009), suggest that these microbial
mats showed a high degree of complexity and hint at earlier steps in
organismic evolution, as previously suggested (Orange et al. 2009).

The mappable extent of the macroscopically visible microbial mats,
ubiquitously preserved in millimeter- and centimeter-spaced, green
wispy laminations and chert bands over a section hundreds of meters
thick and extending over many kilometers along strike, implies rapid
growth rates of microbial mats fueled by an ample supply of nutrients
and a high resilience against environmental changes. They constitute a
surprisingly large volume of benthic biomass. If Archean siliciclastic
shorelines in general had a similar appearance as the occurrence
studied here, microbial mats would have exerted major influence on
shoreline morphology and sediment dynamics.

If microbial mats became silicified while still exposed at the
sediment–water or sediment–atmosphere interface, they likely acted as
an effective barrier between unconsolidated sediment and the flowing,
sediment-laden water. The implications of this effect are to-date poorly
known but, aside from the well-documented retarded dewatering, may
have included a reduced surface roughness to turbulent flow and a
longer residence time of saturated interstitial waters, thus affecting
weathering and early diagenesis.

The d13C values lie within the range of recent marine photo-
synthesizers and thus also make a significant contribution by (strongly
d13C-negative) methanotrophs unlikely. Even though the microbial mat
morphology resembles that of modern photosynthetic mats, we know
that this is an indirect argument at best. There is no attempt to relate the
detected structures to a specified group of organisms.

CONCLUSIONS

We concluded that the black chert bands and, by extension, also the
abundant green crinkly mats, are moderately to excellently preserved

FIG. 10.—Photographs of sample No. 3 divided into four chips, with

their respective d13Corg values posted.

TABLE 2.—d13Corg values of four chert-band–bearing sandstones
(samples 1–4, MdQ1, member 2), which were each cut into two

to five smaller chips.?12

Sample No. Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

1 �14,126 �21,675

2 �23,279 �22,434 �21,853 �23,646

3 �20,173 �14,667 �19,508 �23,759

4 �19,942 �20,487 �21,242 �19,361 �20,962
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FIG. 11.—LIBS maps of Li, Mg, and Rb presenting elemental intensities of the area shown in the thin-section photomicrograph. (a) Polarized light

photomicrograph of the mapped area. The chert band (white) crosses the picture from the lower left to the upper right, surrounded by sandstone

(dark). (b–d) Intensity maps for Li, Mg, and Rb demonstrating a relative enrichment of these elements in the sandstone, whereas the chert band

is characterized by relative depletion.

FIG. 12.—BSE image of stacked carbonaceous laminae in chert overgrowing ‘‘floating’’ sand grain (center). Feldspar grains are shown in white;

quartz is shown in dark gray. The layering defined by contrasting composition is clearly visible in petrographic thin section (a) but invisible in

the BSE image (b), suggesting a carbonaceous composition of the dark bands. Thin section 848–1.
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microbial mats of unknown metabolism. Anoxygenic or oxygenic
photosynthesizing or even heterotroph and complex microbial mats
comparable to some modern analogs (Noffke et al. 2003, Schieber et al.
2007) may be reasonably inferred. Their widespread occurrence in
medium- to high-energy shoreline settings across the Moodies
stratigraphic record attests to the adaptability and tenacity of microbial
life in the Middle Archean.
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