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Some definitions

Layman asks: What is closing temperature???

Expert answers: Closing temperature is an individual concept !!!
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Some definitions

The closure temperature of a geochronolgical system may be
defined as the temperature at the time corresponding to the
apparent age. . . .

The temperature recorded by a ”frozen“ chemical system, in which
a solid phase in contact with a large reservoir has cooled slowly
from high temperatures, is formally identical with geochronological
closing temperature

M.H. Dodson (1973),
Contrib.Min.Pet., 40, 259-274
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Temperature dependence of diffusion coefficient

Diffusion coefficient usually follows the Arrhenius relation

D(T ) = D∞e
−E

RT ,

where D∞ is the diffusion coefficient for RT >> E , i.e. for
infinitely high temperature. If temperature varies with time,
T = T (t):

D(t) = D∞e
−E

RT (t)

and the diffusion equation becomes

∂c

∂t
= D(t)

∂2c

∂x2

R. Abart, E. Petrishcheva Closure Temperature



Transformation of the time variable

Use T0 = T (t = 0), then:

D(t) = D0 exp

[

−

E

R

(

1

T (t)
−

1

T0

)]

,

where D0 is D at T0. Introduce ζ(t) to scale D to the correct
value at time t

D(t) = D0 ζ(t)

Transformed (compressed) time is then defined as:

t ′ =

∫

t

0
ζ(t) dt

or replacing for ζ(t)

t ′ =

∫

t

0
exp

[

−

E

R

(

1

T (t)
−

1

T0

)]

dt
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Transformation of the time variable

by differentiation we obtain

dt ′ = ζ(t) dt

The diffusion equation then becomes

∂c

∂t
= D0 ζ(t)

∂2c

∂x2
,

dividing both sides by ζ(t) and using dt ′ = ζ(t) dt yields:

∂c

∂t ′
= D0

∂2c

∂x2
,

i.e. the problem is reduced to a standard diffusion problem with
constant diffusion coefficient.
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Cooling History

Let T decrease monotonously from T0 at a constat cooling rate s
so that:

T (t) =
T0

1 + (st/T0)

The time dependence of D may then be expressed as:

D(t) = D0 exp

[

−

Est

RT 2
0

]

Let γ = Es/RT 2
0 then this becomes

D(t) = D0e
−γt ,

and

t ′ =
1

γ

(

1 − e−γt
)

.

t ′ can not increase to infinity but is limited to a finite value,

lim
t→∞

(t ′) = 1/γ.
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Atomistic interpretation of “cooling”/“freezing”

For a small time interval dτ the mean squared distance traveled by
a particle in a small time interval dτ is 2Dτdτ (Einstein equation).
The total mean squared distance traveled after time t is

(

X 2
)

=

∫

t

0
2Dτdτ

given cooling at a constant cooling rate and inserting for Dτ yields:

(

X 2
)

= 2D0
1

γ

(

1 − e−γt
)

,

The limiting distance traveled by a particle after t → ∞ is then:

(

X 2
)

= 2D0
1

γ
= 2D∞e

−
E

RT0
RT 2

0

Es
.
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Atomistic interpretation of “cooling”/“freezing”

Let a be a typical diffusion distance in a geological process , then
the closuretemperature, Tc , may be obtained by finding the
minimum initial temperature, T0, which gives a diffusion distance
of a :

a2 =
2D∞RT 2

c

Es
e−

E

RTc

If T0 > Tc , then the mean squared distance traveled by a particle
> a2, if T0 < Tc , then the mean squared distance traveled < a2

and the mineral grain acts as a closed system. Rearrangement
gives:

Tc =
E/R

ln [2D∞RT 2
c /a2Es]

This may be iterated to obtain Tc .
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