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ABSTRACT 
A method is presented to extract a subset of individual bands from a hyperspectral dataset. 
The method seeks to maximize the information content in a given subset by analyzing the 
covariances between individual bands of the original dataset. 

Subsequently, the method is used to reduce the dimensionality of hyperspectral image data 
prior to maximum likelihood classification. The classification results are compared to those 
achieved by using principal components transformation as a well established feature extrac-
tion technique to optimize the performance of the maximum likelihood classifier. 

The test site investigated in this study is located in the southern “Bitburger Gutland” of the 
Eifel region (Rhineland-Palatinate, Germany) The classification is exclusively performed for 
previously mapped agricultural areas (arable land and grassland), for which ground truth data 
had been collected in the same vegetation period. The results of the case study show that the 
proposed method can be used as a technique for dimensionality reduction when the original 
data space should be preserved, e.g. for increasing the computational efficiency of data 
analysis by using spectral subsets. 

INTRODUCTION 
The dimensionality of hyperspectral data is a major limitation when applying traditional ap-
proaches of pattern recognition to a hyperspectral image. When using a supervised paramet-
ric classification algorithm such as the maximum likelihood classifier, parameters must be 
estimated from training data. Thus, if the parameters estimated for the individual classes are 
not reliable, the performance of the classifier will be affected. With increasing dimensionality 
of a hyperspectral dataset, the number of training pixels per class must be increased as well 
to obtain parameters that are sufficiently accurate. Thus, a minimum ratio of the number of 
training pixels to the number of spectral bands used in the classification process is needed to 
reliably estimate the statistical properties of the individual classes – a problem also known as 
the Huges phenomenon (i). 

Principal component analysis is a well established feature extraction technique that can be 
applied to hyperspectral data to reduce data dimensionality and mitigate the Hughes phe-
nomenon (i). One advantage of the principal components transformation is that it is defined 
only by the statistical properties of the data itself and does not depend on the statistics of the 
individual classes to be discriminated. However, principal component images can not easily 
be interpreted in terms of spectral features of the original data to determine the spectral prop-
erties and wavelength regions of influence. Therefore, traditional feature selection methods 
have been used with hyperspectral image data to reduce data dimensionality by selection of 
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individual bands in the wavelength space (i, ii). Most of these methods rely on separability 
measures such as the Jeffries-Matusita distance to find the best spectral subset to use for 
classification. Subset selection using this approach again requires a large number of samples 
to get reliable class statistics in the high dimensional original data space. The feature extrac-
tion algorithm presented in this paper seeks to select a spectral subset of the original data 
with maximum information content by evaluating the statistics of the original data without 
making prior assumptions on any class properties. 

METHODS 
The Algorithm for Feature Extraction 

High dimensional remotely sensed data are characterized by strong correlations between 
adjacent bands. Assuming a Gaussian distribution, the data will be arranged in the shape of 
an elongated hyperellipsoid with its origin at the mean of the data and its semi-axes pointing 
in the directions of the eigenvectors derived from the data’s variance-covariance matrix. The 
lengths of these semi-axes are proportional to the eigenvalues corresponding to the individual 
eigenvectors (iii). 

Given an arbitrary subset of n bands taken from the original p (>n) bands, the best n-
dimensional subset (i.e. the n-subset containing as much information of the original data as 
possible) that can be selected from the original data is the one forming the n-dimensional 
hyperellipsoid of maximum volume. (iv) The volume of an ellipsoid is proportional to the prod-
uct of the lengths of its semi-axes. Because the lengths of these semi-axes can be expressed 
by the eigenvalues of the variance-covariance matrix and the product of a matrix’s eigenval-
ues is equal to its determinant, the n-dimensional hyperellipsoid of maximum volume can be 
found by computing the determinant of every possible n x n submatrix of the original variance-
covariance matrix and then selecting the n bands that define the submatrix with the largest 
determinant (iv). 

If the number p of original bands is large, as is the case with hyperspectral data, it is not fea-
sible to compute and compare the determinants for every possible combination of n bands 
taken from the original dataset. Thus, the above general logic for band selection has been 
combined with a simple stepwise feature selection algorithm (v) to extract subsets from hy-
perspectral data. The resulting algorithm starts with the band of maximum variance, i.e. with 
the largest diagonal element in the variance-covariance matrix, and subsequently adds one 
band at a time from the remaining set of p-n bands in such a way as to maximize the deter-
minant of the n x n variance-covariance submatrix defined by the currently selected set. The 
algorithm stops when the number of currently selected bands equals a specified value. 

Now, the question arises how many bands must be selected from the original dataset to ex-
tract the maximum amount of information by using only a minimum number of bands. Be-
cause of the high correlations between adjacent bands, most of the eigenvalues of the vari-
ance-covariance matrix of hyperspectral remote sensing data will be very small in value. 
Therefore, the determinant of the matrix will also have a very small value (iii). When comput-
ing the determinant of the variance-covariance matrix of a complete hyperspectral dataset 
using a personal computer and double precision floating point arithmetic, the result is often 
within rounding error of zero. The optimal subset of bands should thus be the largest combi-
nation of n bands selected by the algorithm for which the determinant of the associated vari-
ance-covariance submatrix is greater than zero. Since the remaining bands of the original 
dataset can be treated as linear combinations of the already selected bands when the result-
ing variance-covariance submatrix is approximately singular, adding any more bands will not 
provide additional information. 

A Case Study to Verify the Algorithm 

To verify the above method for feature selection, a case study was carried out involving the 
comparison of the results of several maximum likelihood classifications performed on a prin-
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cipal components transformed image of the original dataset, a principal components trans-
formed subset of the original data selected by the algorithm described and on the untrans-
formed extracted subset itself. 

The hyperspectral image data investigated were acquired on the 28th of May 2005 for a study 
site near Newel in the Eifel region (Rhineland-Palatinate, Germany). The site can be 
characterized as a rural agrarian landscape with a pronounced variety of crops. The data 
originates from a single overflight of the HyMap airborne imaging system. The sensor covers 
a spectral range from approximately 0.4 to 2.5 µm by a total of 126 bands with individual 
bandwidths ranging from 13 to 21 nm. The HyMap image data were geometrically corrected 
by a parametric approach (vi) using a digital elevation model, attitude information and ground 
control points derived from GPS measurements. The FLAASH (Fast Line of Sight 
Atmospheric Analysis of Spectral Hypercubes) module of the ENVI image processing system 
was used for the atmospheric correction of the data. After atmospheric correction, eight 
bands of the dataset were removed because of noise, leaving a total of 118 bands that were 
used for further analysis. 

Within the same vegetation period of the HyMap overflight, ground truth data were collected 
by detailed mapping of land use and crop types across a major part of the area imaged by the 
sensor. The data were prepared in a vector GIS layer to be able to analyse them in connec-
tion with the image data. 

Based on the digitized map of land use and crop types, two sets of pixels were generated 
from the imaged area by random sampling. Within every set, six land use classes were dis-
tinguished: grassland, maize crop, winter cereal crop, summer cereal crop, rape crop and 
potato crop. The sample size of the individual classes in every set was chosen to be 15 per-
cent of the total number of pixels mapped to the appropriate class in the reference data. The 
first of the two sets of pixels was used to train the maximum likelihood classifier, the second 
was used as a validation set to assess the classification accuracy achieved when using the 
three different feature extraction approaches. The image statistics to define the variance-
covariance matrix as well as the classification were calculated exclusively for the image areas 
covered by the reference map, all other image areas were masked out using the vector layer 
prepared from the ground truth data. 

RESULTS & DISCUSSION 
Figure 1 shows vegetation spectra derived from the HyMap image and the wavelengths and 
wavelength ranges of the bands selected by the feature extraction algorithm described. In 
total, 67 bands could be selected from the original set of 118 bands without the resulting vari-
ance-covariance submatrix being singular within rounding error of zero (i.e. having a determi-
nant equal to zero). The choice of bands suggests that the dynamics in the reflectance spec-
tra of the vegetated areas considered in the analysis are mainly driven by green biomass, 
because the complete near infrared wavelength range was selected. A second continuous 
range of bands was selected in the visible portion of the spectrum covering the green peak 
and a major part of the chlorophyll absorption features in the red part of the spectrum. Other 
spectral regions preferred by the feature selection procedure were around the water absorp-
tion features at 1.4 µm and 1.9 µm, and in the wavelength range between 1.5 µm and 2.0 µm. 
The wavelength ranges selected generally correspond to the spectral positions of the optimal 
bands proposed for vegetation analysis by Thenkabail et al. (vii), with the exception that only 
one selected band is from the spectral region beyond 2.0 µm while Thenkabail et al. (vii) pro-
pose three different wavelength ranges in that region. A problem occurs with the feature ex-
traction algorithm when the original dataset contains noisy bands, because the higher vari-
ance in these bands is interpreted as high information content and bands affected by noise 
are thus preferred in the selection process. It is likely that the bands around 1.4 µm and 1.9 
µm have been selected due to the water vapour induced noise present in these channels. 
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Figure 1: Mean spectrum with standard deviations derived from the area of the HyMap image 
considered for classification. The grey bars indicate the wavelengths and wavelength ranges 
of the optimal bands selected from the complete dataset. 

 

To verify the optimized information content in the 67 selected bands, a maximum likelihood 
classifier was applied to the principal components of both the complete dataset and the sub-
set of selected bands. The first six principal components of either transform were used in the 
classification process. For both approaches, the six components explained 99.7 % of the 
variance of the untransformed data (see Table 1). As a third variant, the classifier was applied 
to the untransformed selected subset. The overall classification accuracies and kappa coeffi-
cients (viii, ix) derived from the confusion matrices that were generated when classifying the 
test set are shown in Table 2. It can be seen that there is no distinct difference between the 
classification accuracies and kappa coefficients for the two principal components transformed 
datasets. Thus, in the case of the image data investigated, the presented feature extraction 
method was able to find a subset of slightly more than half of the original number of bands 
that contained all of the essential information needed for a maximum likelihood classification 
of the data. When applied to the original feature (wavelength) space of the 67 selected  
 

Table 1: Accumulated percentage of the total variance explained by the six principal compo-
nents used in the classification process. 

Component 
Number 

PCA Complete Dataset PCA Selected Bands

1 64.6 69.8 
2 93.9 93.3 
3 98.5 98.3 
4 99.4 99.4 
5 99.6 99.6 
6 99.7 99.7 
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bands, the classifier showed a slightly better performance concerning overall classification 
accuracy, and a clearly better performance with regard to the kappa coefficient. However, as 
the classification was based on a large size of training samples, it must be assumed that the 
large sample size compensates to some extent the effects of the still high dimensional data 
space of the selected subset. A land use map derived from the classification performed on 
the 67 selected bands is shown in Figure 2. 

Table 2: Overall classification accuracies and kappa coefficients for the maximum likelihood 
classification based on the three different feature reduction approaches. 

 PCA Complete 
Dataset 

PCA Selected 
Bands 

Selected Bands 
(untransformed)

Overall Accuracy 
(%) 

84.6 84.3 88.7 

Kappa Coefficient 0.63 0.63 0.72 

Figure 2: Resulting land use map of the classification based on the untransformed optimal 
subset of the HyMap data. 
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CONCLUSIONS 

For the dataset investigated in this case study, the classifications based on the principal 
component transforms of the complete dataset and the selected subset yielded nearly the 
same result. Thus, the presented algorithm for feature extraction succeeded in reducing the 
dimensionality of the original data while keeping as much information as possible. However, 
the method can only approximate the best set of bands and there is no guarantee that the 
algorithm will perform in a similar manner for other hyperspectral datasets. An advantage of 
the method is that it can provide an objective way for dimensionality reduction of hyperspec-
tral data, even if there is no prior knowledge about the intrinsic properties of the data. This 
may be relevant not only for classification approaches, but also for methods of quantitative 
analysis where the original data space should be preserved, but a reduction of the data vol-
ume is desirable in terms of computational efficiency. 
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