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How to work with git

Sebastian Illing
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● Storing versions (properly)

● Restoring Previous Versions

● Understanding What Happened

● Collaboration

● Backup

Why use a Version Control System?
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Git is a Distributed Version Control System

● Clients mirror whole repository

● No single point of failure

● Most work is local

● Remote is optional
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Getting a Git Repository

Initializing a Repository in an Existing Directory

> cd existing_directory
> git init
> cd existing_directory
> git init

Cloning an Existing Repository

> git clone https://github.com/some_repo.git> git clone https://github.com/some_repo.git

● Creates directory some_repo
● Initializes a .git directory
● Pulls down all data of the repository

● Creates subdirectory .git
● But nothing in the directory is tracked yet!

> git add <files>  # track files
> git commit -m 'initial project version'
> git add <files>  # track files
> git commit -m 'initial project version'



  5

1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

> git push> git push

Basic Workflow
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1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

> git push> git push

Basic Workflow
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The Three States

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

Modify your files Stage files for next 
commit

Commit stores staged 
files permanently

> git add <file_names>> git add <file_names>

How to        files to staging area?

> git commit> git commit

How to               staged files?

add commit

addadd

commitcommit
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Why is the staging area useful?

● Split work into separate commits
→ Full control what you want to commit

● Allows / forces you to review changes

# Bypass the staging area
> git commit -a  
# Bypass the staging area
> git commit -a  

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

> git add -e <file>  > git add -e <file>  
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Checking the Status of your Files

> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

> echo 'My Project' > README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
  (use "git add <file>..." to include in what will 
be committed)

    README

nothing added to commit but untracked files 
present (use "git add" to track)

> echo 'My Project' > README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
  (use "git add <file>..." to include in what will 
be committed)

    README

nothing added to commit but untracked files 
present (use "git add" to track)
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Checking the Status of your Files

> git add README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README

> git add README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README
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> vim CONTRIBUTING.md  # change some lines
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README

Changes not staged for commit:
  (use "git add <file>..." to update what will be 
committed)
  (use "git checkout -- <file>..." to discard 
changes in working directory)

    modified:   CONTRIBUTING.md

> vim CONTRIBUTING.md  # change some lines
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README

Changes not staged for commit:
  (use "git add <file>..." to update what will be 
committed)
  (use "git checkout -- <file>..." to discard 
changes in working directory)

    modified:   CONTRIBUTING.md

Checking the Status of your Files
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Viewing your changes

How to see your unstaged changes?

> git diff <optional-filename>
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 54fe737..d5878d7 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -1,3 +1,3 @@
 This is a testfile
-Here is a tpyo
+Here is a typo

> git diff <optional-filename>
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 54fe737..d5878d7 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -1,3 +1,3 @@
 This is a testfile
-Here is a tpyo
+Here is a typo

How to see your staged changes?

> git diff –-staged <optional-filename>> git diff –-staged <optional-filename>

How to see difference between two commits?

> git diff <commit> <commit> > git diff <commit> <commit> 
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1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

> git push> git push

Basic Workflow
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reset

Undoing things

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

# Unstaging a Staged File
> git reset <file>   
# Unstaging a Staged File
> git reset <file>   

# Unmodifying a Modified File
> git checkout <file>   
# Unmodifying a Modified File
> git checkout <file>   

checkout

# Adds staging area to last commit
> git commit --amend   
# Adds staging area to last commit
> git commit --amend   

What if you commited too early or messed up your commit message?
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Viewing the Commit History

> git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Thu Feb 2 16:52:11 2017 +0000

    change the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Tue Jan 31 16:40:33 2017 +0000

    add README

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Mon Jan 30 10:31:28 2017 +0000

    first commit

> git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Thu Feb 2 16:52:11 2017 +0000

    change the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Tue Jan 31 16:40:33 2017 +0000

    add README

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date:   Mon Jan 30 10:31:28 2017 +0000

    first commit
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1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

# See what has changed
> git status
> git diff <filename>

# Choose files to commit
> git add <file1> <file2>

# Finally commit the changes
> git commit

> git push> git push

Basic Workflow
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reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

Working with remotes

# add a remote repository
> git remote add <url>
> git branch --set-upstream master origin/master

# add a remote repository
> git remote add <url>
> git branch --set-upstream master origin/master

push

> git push> git push

How to         changes to remote?pushpush
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Working with remotes

How to        latest changes from server?pullpull

reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

push

fetch

# Fetch changes
> git fetch
> git merge origin master

# Fetch changes
> git fetch
> git merge origin master

# Fetch and merge combined
> git pull
# Fetch and merge combined
> git pull

pull
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Basic Merge Conflicts

> git pull or git merge origin master
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed; 
fix conflicts and then commit the result.

> git pull or git merge origin master
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed; 
fix conflicts and then commit the result.

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> origin:calc.py

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> origin:calc.py

please contact us at email.support@github.complease contact us at email.support@github.com

# commit resolved merge conflict
> git add calc.py
> git commit

# commit resolved merge conflict
> git add calc.py
> git commit
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# Get changes from remote
> git pull
# Do your usual work
# See what has changed
> git status
> git diff <filename>
# Choose files to commit
> git add <file1> <file2>
# Finally commit the changes
> git commit
# Push commits to remote
> git push

# Get changes from remote
> git pull
# Do your usual work
# See what has changed
> git status
> git diff <filename>
# Choose files to commit
> git add <file1> <file2>
# Finally commit the changes
> git commit
# Push commits to remote
> git push

reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

push

fetch

pull



  21

GitLab is a graphical interface for your remote repositories

https://gitlab.met.fu-berlin.de/

Login using your ldap account

https://gitlab.met.fu-berlin.de/
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Additional Resources

Git cheat sheet:
https://www.git-tower.com/blog/git-cheat-sheet

Video course (about 4h):
https://de.udacity.com/course/how-to-use-git-and-github--ud775/

Very good ebook:
https://git-scm.com/book/en/v2

And of course:
git <command> --help

https://www.git-tower.com/blog/git-cheat-sheet
https://de.udacity.com/course/how-to-use-git-and-github--ud775/
https://git-scm.com/book/en/v2
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Working in Contexts

In real projects, work happens in multiple contexts in parallel:

● You have a stable version of your software (context 1)

● You are writing on the documentation (context 2)

● You're implementing a new feature (context 3)

● You're also trying to fix an annoying bug (context 4)

Not working in clearly separated contexts will cause problems:

● You have developed a cool plugin for the Freva system

● You're working on a new feature and made some commits

● Someone discovers a critical bug 

What can you do?
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Working with Branches

A Branch represents a context in a project and helps you keep it separate 
from all other contexts.

C1 C2 C3C3 C4

master HEAD

# create a new branch
> git branch feature
# switch context
> git checkout feature

# create a new branch
> git branch feature
# switch context
> git checkout feature

C1 C2 C3C3 C4

master

feature HEAD
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Working with Branches

# do some work
> vim test.py
> git add test.py
> git commit -m 'made a change'

# do some work
> vim test.py
> git add test.py
> git commit -m 'made a change'

C1 C2 C3C3 C4

master

feature HEAD

C5
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Working with Branches

# Bug discovered
> git checkout master  # moves HEAD to master
> vim calc.py          # fix the bug
> git add calc.py
> git commit -m 'fix bug'

# Bug discovered
> git checkout master  # moves HEAD to master
> vim calc.py          # fix the bug
> git add calc.py
> git commit -m 'fix bug'

C1 C2 C3C3 C4

master

feature

HEAD

C5

C6

The bug is fixed and we can work on the new feature again!
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Working with Branches

# Finish the new feature
> git checkout feature  # moves HEAD to feature
> vim test.py           # finish the feature
> git add test.py
> git commit -m 'Add new feature'

# Finish the new feature
> git checkout feature  # moves HEAD to feature
> vim test.py           # finish the feature
> git add test.py
> git commit -m 'Add new feature'

C1 C2 C3C3 C4

master

feature HEAD

C5

C6

How can we get the new feature to the master branch?

C7
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Basic Merging

# Merge feature into master
> git checkout master  
> git merge feature
Merge made by the 'recursive' strategy.
test.py |    3 +--
1 file changed, 1 insertion(+), 3 deletions(-)
> git branch -d feature   # delete branch

# Merge feature into master
> git checkout master  
> git merge feature
Merge made by the 'recursive' strategy.
test.py |    3 +--
1 file changed, 1 insertion(+), 3 deletions(-)
> git branch -d feature   # delete branch

C1 C2 C3C3 C4

master

feature

HEAD

C5

C6

C7

C7
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Basic Merge Conflicts

> git merge feature
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed; 
fix conflicts and then commit the result.

> git merge feature
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed; 
fix conflicts and then commit the result.

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> feature:calc.py

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> feature:calc.py

please contact us at email.support@github.complease contact us at email.support@github.com

# commit resolved merge conflict
> git commit
# commit resolved merge conflict
> git commit
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