
 1

How to work with git

Sebastian Illing

 2

● Storing versions (properly)

● Restoring Previous Versions

● Understanding What Happened

● Collaboration

● Backup

Why use a Version Control System?

 3

Git is a Distributed Version Control System

● Clients mirror whole repository

● No single point of failure

● Most work is local

● Remote is optional

 4

Getting a Git Repository

Initializing a Repository in an Existing Directory

> cd existing_directory
> git init
> cd existing_directory
> git init

Cloning an Existing Repository

> git clone https://github.com/some_repo.git> git clone https://github.com/some_repo.git

● Creates directory some_repo
● Initializes a .git directory
● Pulls down all data of the repository

● Creates subdirectory .git
● But nothing in the directory is tracked yet!

> git add <files> # track files
> git commit -m 'initial project version'
> git add <files> # track files
> git commit -m 'initial project version'

 5

1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

> git push> git push

Basic Workflow

 6

1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

> git push> git push

Basic Workflow

 7

The Three States

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

Modify your files Stage files for next
commit

Commit stores staged
files permanently

> git add <file_names>> git add <file_names>

How to files to staging area?

> git commit> git commit

How to staged files?

add commit

addadd

commitcommit

 8

Why is the staging area useful?

● Split work into separate commits
→ Full control what you want to commit

● Allows / forces you to review changes

Bypass the staging area
> git commit -a
Bypass the staging area
> git commit -a

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

> git add -e <file> > git add -e <file>

 9

Checking the Status of your Files

> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

> echo 'My Project' > README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
 (use "git add <file>..." to include in what will
be committed)

 README

nothing added to commit but untracked files
present (use "git add" to track)

> echo 'My Project' > README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
 (use "git add <file>..." to include in what will
be committed)

 README

nothing added to commit but untracked files
present (use "git add" to track)

 10

Checking the Status of your Files

> git add README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

> git add README
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

 11

> vim CONTRIBUTING.md # change some lines
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard
changes in working directory)

 modified: CONTRIBUTING.md

> vim CONTRIBUTING.md # change some lines
> git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard
changes in working directory)

 modified: CONTRIBUTING.md

Checking the Status of your Files

 12

Viewing your changes

How to see your unstaged changes?

> git diff <optional-filename>
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 54fe737..d5878d7 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -1,3 +1,3 @@
 This is a testfile
-Here is a tpyo
+Here is a typo

> git diff <optional-filename>
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 54fe737..d5878d7 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -1,3 +1,3 @@
 This is a testfile
-Here is a tpyo
+Here is a typo

How to see your staged changes?

> git diff –-staged <optional-filename>> git diff –-staged <optional-filename>

How to see difference between two commits?

> git diff <commit> <commit> > git diff <commit> <commit>

 13

1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

> git push> git push

Basic Workflow

 14

reset

Undoing things

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

Unstaging a Staged File
> git reset <file>
Unstaging a Staged File
> git reset <file>

Unmodifying a Modified File
> git checkout <file>
Unmodifying a Modified File
> git checkout <file>

checkout

Adds staging area to last commit
> git commit --amend
Adds staging area to last commit
> git commit --amend

What if you commited too early or messed up your commit message?

 15

Viewing the Commit History

> git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Thu Feb 2 16:52:11 2017 +0000

 change the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Tue Jan 31 16:40:33 2017 +0000

 add README

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Mon Jan 30 10:31:28 2017 +0000

 first commit

> git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Thu Feb 2 16:52:11 2017 +0000

 change the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Tue Jan 31 16:40:33 2017 +0000

 add README

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Illing <sebastian.illing@met.fu-berlin.de>
Date: Mon Jan 30 10:31:28 2017 +0000

 first commit

 16

1. Start by pulling down the latest changes from the server

2. Work as usual

3. Wrap up your changes in a commit

4. Push your changes to the server

> git pull> git pull

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

See what has changed
> git status
> git diff <filename>

Choose files to commit
> git add <file1> <file2>

Finally commit the changes
> git commit

> git push> git push

Basic Workflow

 17

reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

Working with remotes

add a remote repository
> git remote add <url>
> git branch --set-upstream master origin/master

add a remote repository
> git remote add <url>
> git branch --set-upstream master origin/master

push

> git push> git push

How to changes to remote?pushpush

 18

Working with remotes

How to latest changes from server?pullpull

reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

push

fetch

Fetch changes
> git fetch
> git merge origin master

Fetch changes
> git fetch
> git merge origin master

Fetch and merge combined
> git pull
Fetch and merge combined
> git pull

pull

 19

Basic Merge Conflicts

> git pull or git merge origin master
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed;
fix conflicts and then commit the result.

> git pull or git merge origin master
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed;
fix conflicts and then commit the result.

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> origin:calc.py

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> origin:calc.py

please contact us at email.support@github.complease contact us at email.support@github.com

commit resolved merge conflict
> git add calc.py
> git commit

commit resolved merge conflict
> git add calc.py
> git commit

 20

Get changes from remote
> git pull
Do your usual work
See what has changed
> git status
> git diff <filename>
Choose files to commit
> git add <file1> <file2>
Finally commit the changes
> git commit
Push commits to remote
> git push

Get changes from remote
> git pull
Do your usual work
See what has changed
> git status
> git diff <filename>
Choose files to commit
> git add <file1> <file2>
Finally commit the changes
> git commit
Push commits to remote
> git push

reset

Working
Directory

Staging Area
(index)

.git Directory
(Repository)

add commit

checkout

Remote
Repository

push

fetch

pull

 21

GitLab is a graphical interface for your remote repositories

https://gitlab.met.fu-berlin.de/

Login using your ldap account

https://gitlab.met.fu-berlin.de/

 22

Additional Resources

Git cheat sheet:
https://www.git-tower.com/blog/git-cheat-sheet

Video course (about 4h):
https://de.udacity.com/course/how-to-use-git-and-github--ud775/

Very good ebook:
https://git-scm.com/book/en/v2

And of course:
git <command> --help

https://www.git-tower.com/blog/git-cheat-sheet
https://de.udacity.com/course/how-to-use-git-and-github--ud775/
https://git-scm.com/book/en/v2

 23

 24

Working in Contexts

In real projects, work happens in multiple contexts in parallel:

● You have a stable version of your software (context 1)

● You are writing on the documentation (context 2)

● You're implementing a new feature (context 3)

● You're also trying to fix an annoying bug (context 4)

Not working in clearly separated contexts will cause problems:

● You have developed a cool plugin for the Freva system

● You're working on a new feature and made some commits

● Someone discovers a critical bug

What can you do?

 25

Working with Branches

A Branch represents a context in a project and helps you keep it separate
from all other contexts.

C1 C2 C3C3 C4

master HEAD

create a new branch
> git branch feature
switch context
> git checkout feature

create a new branch
> git branch feature
switch context
> git checkout feature

C1 C2 C3C3 C4

master

feature HEAD

 26

Working with Branches

do some work
> vim test.py
> git add test.py
> git commit -m 'made a change'

do some work
> vim test.py
> git add test.py
> git commit -m 'made a change'

C1 C2 C3C3 C4

master

feature HEAD

C5

 27

Working with Branches

Bug discovered
> git checkout master # moves HEAD to master
> vim calc.py # fix the bug
> git add calc.py
> git commit -m 'fix bug'

Bug discovered
> git checkout master # moves HEAD to master
> vim calc.py # fix the bug
> git add calc.py
> git commit -m 'fix bug'

C1 C2 C3C3 C4

master

feature

HEAD

C5

C6

The bug is fixed and we can work on the new feature again!

 28

Working with Branches

Finish the new feature
> git checkout feature # moves HEAD to feature
> vim test.py # finish the feature
> git add test.py
> git commit -m 'Add new feature'

Finish the new feature
> git checkout feature # moves HEAD to feature
> vim test.py # finish the feature
> git add test.py
> git commit -m 'Add new feature'

C1 C2 C3C3 C4

master

feature HEAD

C5

C6

How can we get the new feature to the master branch?

C7

 29

Basic Merging

Merge feature into master
> git checkout master
> git merge feature
Merge made by the 'recursive' strategy.
test.py | 3 +--
1 file changed, 1 insertion(+), 3 deletions(-)
> git branch -d feature # delete branch

Merge feature into master
> git checkout master
> git merge feature
Merge made by the 'recursive' strategy.
test.py | 3 +--
1 file changed, 1 insertion(+), 3 deletions(-)
> git branch -d feature # delete branch

C1 C2 C3C3 C4

master

feature

HEAD

C5

C6

C7

C7

 30

Basic Merge Conflicts

> git merge feature
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed;
fix conflicts and then commit the result.

> git merge feature
Auto-merging calc.py
CONFLICT (content): Merge conflict in calc.py
Automatic merge failed;
fix conflicts and then commit the result.

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> feature:calc.py

<<<<<<< HEAD:calc.py
contact : email.support@freva.de
=======
please contact us at support@freva.de
>>>>>>> feature:calc.py

please contact us at email.support@github.complease contact us at email.support@github.com

commit resolved merge conflict
> git commit
commit resolved merge conflict
> git commit

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

